@article{MayerHentschkeHageretal.2017, author = {Mayer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varnaneh, Hossein Ali}, title = {A Nano-Mechanical Instability as Primary Contribution to Rolling Resistance}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 11275}, publisher = {Springer}, address = {Berlin}, issn = {2045-2322}, year = {2017}, language = {en} } @article{SvaneborgKarimiVarzanehHojdisetal.2018, author = {Svaneborg, Carsten and Karimi-Varzaneh, Hossein Ali and Hojdis, Nils and Fleck, Franz and Everaers, Ralf}, title = {Kremer-Grest Models for Universal Properties of Specific Common Polymer Species}, series = {Soft Condensed Matter}, journal = {Soft Condensed Matter}, number = {1606.05008}, year = {2018}, abstract = {The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and conditions. Here we investigate how to adapt the model to match the universal properties of a wide range of chemical polymers species. For this purpose we vary a single parameter originally introduced by Faller and M{\"u}ller-Plathe, the chain stiffness. Examples include polystyrene, polyethylene, polypropylene, cis-polyisoprene, polydimethylsiloxane, polyethyleneoxide and styrene-butadiene rubber. We do this by matching the number of Kuhn segments per chain and the number of Kuhn segments per cubic Kuhn volume for the polymer species and for the Kremer-Grest model. We also derive mapping relations for converting KG model units back to physical units, in particular we obtain the entanglement time for the KG model as function of stiffness allowing for a time mapping. To test these relations, we generate large equilibrated well entangled polymer melts, and measure the entanglement moduli using a static primitive-path analysis of the entangled melt structure as well as by simulations of step-strain deformation of the model melts. The obtained moduli for our model polymer melts are in good agreement with the experimentally expected moduli.}, language = {en} } @article{WallerBraunHojdisetal.2007, author = {Waller, Mark P. and Braun, Heiko and Hojdis, Nils and B{\"u}hl, Michael}, title = {Geometries of Second-Row Transition-Metal Complexes from Density-Functional Theory}, series = {Journal of Chemical Theory and Computation}, volume = {3}, journal = {Journal of Chemical Theory and Computation}, number = {6}, issn = {1549-9626}, doi = {10.1021/ct700178y}, pages = {2234 -- 2242}, year = {2007}, language = {en} } @article{HagerHentschkeHojdisetal.2015, author = {Hager, Jonathan and Hentschke, Reinhard and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Computer Simulation of Particle-Particle Interaction in a Model Polymer Nanocomposite}, series = {Macromolecules}, volume = {48}, journal = {Macromolecules}, number = {24}, issn = {1520-5835}, doi = {10.1021/acs.macromol.5b01864}, pages = {9039 -- 9049}, year = {2015}, language = {en} } @article{MeyerHentschkeHageretal.2017, author = {Meyer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica-Silica Contact in Filled Rubber}, series = {Macromolecules}, volume = {50}, journal = {Macromolecules}, number = {17}, issn = {1520-5835}, doi = {10.1021/acs.macromol.7b00947}, pages = {6679 -- 6689}, year = {2017}, language = {en} } @article{EveraersKarimiVarzanehFlecketal.2020, author = {Everaers, Ralf and Karimi-Varzaneh, Hossein Ali and Fleck, Franz and Hojdis, Nils and Svaneborg, Carsten}, title = {Kremer-Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale}, series = {Macromolecules}, volume = {53}, journal = {Macromolecules}, number = {6}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5835}, doi = {10.1021/acs.macromol.9b02428}, pages = {1901 -- 1916}, year = {2020}, abstract = {The Kremer-Grest (KG) polymer model is a standard model for studying generic polymer properties in molecular dynamics simulations. It owes its popularity to its simplicity and computational efficiency, rather than its ability to represent specific polymers species and conditions. Here we show that by tuning the chain stiffness it is possible to adapt the KG model to model melts of real polymers. In particular, we provide mapping relations from KG to SI units for a wide range of commodity polymers. The connection between the experimental and the KG melts is made at the Kuhn scale, i.e., at the crossover from the chemistry-specific small scale to the universal large scale behavior. We expect Kuhn scale-mapped KG models to faithfully represent universal properties dominated by the large scale conformational statistics and dynamics of flexible polymers. In particular, we observe very good agreement between entanglement moduli of our KG models and the experimental moduli of the target polymers.}, language = {en} } @misc{AlKaidyTippkoetterUlber2016, author = {Al-Kaidy, Huschyar and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Vorrichtung und Verfahren zur Bestimmung des Kontaktwinkels eines Fl{\"u}ssigk{\"o}rpers mit einer Festk{\"o}rperoberfl{\"a}che}, year = {2016}, abstract = {Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zur Bestimmung des Kontaktwinkels eines fl{\"u}ssigen oder mit Fl{\"u}ssigkeit gef{\"u}llten K{\"o}rpers. Dieser besteht aus einem Tr{\"a}ger (1) und einer damit verbundenen, in einem Winkelbereich von mehr als 0 ° bis maximal 90 ° neigbaren Ebene (8) mit einer darin ausgebildeten Abrollbahn (9) f{\"u}r den fl{\"u}ssigen oder mit Fl{\"u}ssigkeit gef{\"u}llten K{\"o}rper. An der Ebene (8) sind mehrere Sensoren (11,12) zur Erfassung der Rolldauer des K{\"o}rpers entlang der Rollstrecke angeordnet. Erfindungsgem{\"a}ß ist vorgesehen, dass die Einstellung des Neigungswinkels der Ebene (8) {\"u}ber ein Winkelmessger{\"a}t (10) erfolgt, wodurch ein Abrollwinkel erfassbar ist, bei dem der K{\"o}rper in Bewegung ger{\"a}t. Aus der Rolldauer, der Rollstrecke und dem Abrollwinkel wird der Kontaktwinkel des K{\"o}rpers ermittelt.}, language = {de} } @misc{HuschyarTippkoetterUlber2015, author = {Huschyar, Al-Kaidy and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {System und Verfahren zur Durchf{\"u}hrung von chemischen, biologischen oder physikalischen Reaktionen}, year = {2015}, language = {de} } @misc{StadtmuellerTippkoetterUlber2015, author = {Stadtm{\"u}ller, Ralf and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Method for production of single-stranded macronucleotides}, year = {2015}, abstract = {The invention relates to a method for production of single-stranded macronucleotides by amplifying and ligating an extended monomeric single-stranded target nucleic acid sequence (targetss) into a repetitive cluster of double-stranded target nucleic acid sequences (targetds), and subsequently cloning the construct into a vector (aptagene vector). The aptagene vector is transformed into host cells for replication of the aptagene and isolated in order to optain single-stranded target sequences (targetss). The invention also relates to single-stranded nucleic acids, produced by a method of the invention.}, language = {en} } @inproceedings{WulfhorstMerseburgTippkoetter2015, author = {Wulfhorst, Helene and Merseburg, Johannes and Tippk{\"o}tter, Nils}, title = {Analyse von Lignocellulose mittels dynamischer Differenzkalorimetrie und Infrarot - Spektrometrie}, series = {12. Dresdner Sensor-Symposium 2015 2015-12-07 - 2015-12-09}, booktitle = {12. Dresdner Sensor-Symposium 2015 2015-12-07 - 2015-12-09}, isbn = {978-3-9813484-9-1}, doi = {10.5162/12dss2015/P6.2}, pages = {210 -- 215}, year = {2015}, language = {de} }