@article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katja N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Gastrocnemius medialis contractile behavior is preserved during 30\% body weight supported gait training}, series = {Frontiers in Sports and Active Living}, volume = {2021}, journal = {Frontiers in Sports and Active Living}, number = {2}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9367}, doi = {10.3389/fspor.2020.614559}, pages = {Artikel 614559}, year = {2021}, abstract = {Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30\% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75\% of the speed at which they typically transition to running, with 0\% and 30\% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle-tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle-tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle-series elastic element behavior. Walking with 30\% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle-tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle-series elastic element behavior was observed during walking with 30\% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking.}, language = {en} } @article{StaeudleSeynnesLapsetal.2022, author = {St{\"a}udle, Benjamin and Seynnes, Olivier and Laps, Guido and Br{\"u}ggemann, Gert-Peter and Albracht, Kirsten}, title = {Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.792576}, pages = {12 Seiten}, year = {2022}, abstract = {Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s-1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36\%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49\% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task.}, language = {en} } @article{AlnemerKotliarNeuhausetal.2023, author = {Alnemer, Momin Sami Mohammad and Kotliar, Konstantin and Neuhaus, Valentin and Pape, Hans-Christoph and Ciritsis, Bernhard D.}, title = {Cost-effectiveness analysis of surgical proximal femur fracture prevention in elderly: a Markov cohort simulation model}, series = {Cost Effectiveness and Resource Allocation}, journal = {Cost Effectiveness and Resource Allocation}, number = {21, Article number: 77}, publisher = {Springer Nature}, issn = {1478-7547}, doi = {10.1186/s12962-023-00482-4}, pages = {12 Seiten}, year = {2023}, abstract = {Background Hip fractures are a common and costly health problem, resulting in significant morbidity and mortality, as well as high costs for healthcare systems, especially for the elderly. Implementing surgical preventive strategies has the potential to improve the quality of life and reduce the burden on healthcare resources, particularly in the long term. However, there are currently limited guidelines for standardizing hip fracture prophylaxis practices. Methods This study used a cost-effectiveness analysis with a finite-state Markov model and cohort simulation to evaluate the primary and secondary surgical prevention of hip fractures in the elderly. Patients aged 60 to 90 years were simulated in two different models (A and B) to assess prevention at different levels. Model A assumed prophylaxis was performed during the fracture operation on the contralateral side, while Model B included individuals with high fracture risk factors. Costs were obtained from the Centers for Medicare \& Medicaid Services, and transition probabilities and health state utilities were derived from available literature. The baseline assumption was a 10\% reduction in fracture risk after prophylaxis. A sensitivity analysis was also conducted to assess the reliability and variability of the results. Results With a 10\% fracture risk reduction, model A costs between \$8,850 and \$46,940 per quality-adjusted life-year (\$/QALY). Additionally, it proved most cost-effective in the age range between 61 and 81 years. The sensitivity analysis established that a reduction of ≥ 2.8\% is needed for prophylaxis to be definitely cost-effective. The cost-effectiveness at the secondary prevention level was most sensitive to the cost of the contralateral side's prophylaxis, the patient's age, and fracture treatment cost. For high-risk patients with no fracture history, the cost-effectiveness of a preventive strategy depends on their risk profile. In the baseline analysis, the incremental cost-effectiveness ratio at the primary prevention level varied between \$11,000/QALY and \$74,000/QALY, which is below the defined willingness to pay threshold. Conclusion Due to the high cost of hip fracture treatment and its increased morbidity, surgical prophylaxis strategies have demonstrated that they can significantly relieve the healthcare system. Various key assumptions facilitated the modeling, allowing for adequate room for uncertainty. Further research is needed to evaluate health-state-associated risks.}, language = {en} } @article{DigelAkimbekovRogachevetal.2023, author = {Digel, Ilya and Akimbekov, Nuraly S. and Rogachev, Evgeniy and Pogorelova, Natalia}, title = {Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural properties}, series = {Cellulose}, journal = {Cellulose}, publisher = {Springer Science + Business Media}, address = {Dordrecht}, issn = {1572-882X (Online)}, doi = {10.1007/s10570-023-05592-z}, pages = {15 Seiten}, year = {2023}, abstract = {In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) synthesized by Medusomyces gisevii have been studied. The culture medium was composed of different initial concentrations of glucose or sucrose dissolved in 0.4\% extract of plain green tea. Parameters of the culture media (titratable acidity, substrate conversion degree etc.) were monitored daily for 20 days of cultivation. The BC pellicles produced on different carbon sources were characterized in terms of biomass yield, crystallinity and morphology by field emission scanning electron microscopy (FE-SEM), atomic force microscopy and X-ray diffraction. Our results showed that Medusomyces gisevii had higher BC yields in media with sugar concentrations close to 10 g L-1 after a 18-20 days incubation period. Glucose in general lead to a higher BC yield (173 g L-1) compared to sucrose (163.5 g L-1). The BC crystallinity degree and surface roughness were higher in the samples synthetized from sucrose. Obtained FE-SEM micrographs show that the BC pellicles synthesized in the sucrose media contained densely packed tangles of cellulose fibrils whereas the BC produced in the glucose media displayed rather linear geometry of the BC fibrils without noticeable aggregates.}, language = {en} } @article{ThiebesKleinZingsheimetal.2022, author = {Thiebes, Anja Lena and Klein, Sarah and Zingsheim, Jonas and M{\"o}ller, Georg H. and G{\"u}rzing, Stefanie and Reddemann, Manuel A. and Behbahani, Mehdi and Cornelissen, Christian G.}, title = {Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio}, series = {pharmaceutics}, volume = {14}, journal = {pharmaceutics}, number = {11}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/pharmaceutics14112421}, pages = {Artikel 2421}, year = {2022}, abstract = {Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4-33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90\% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50\%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing.}, language = {en} } @article{HerssensCowburnAlbrachtetal.2022, author = {Herssens, Nolan and Cowburn, James and Albracht, Kirsten and Braunstein, Bjoern and Cazzola, Dario and Colyer, Steffi and Minetti, Alberto E. and Pavei, Gaspare and Rittweger, J{\"o}rn and Weber, Tobias and Green, David A.}, title = {Movement in low gravity environments (MoLo) programme - the MoLo-L.O.O.P. study protocol}, series = {PLOS ONE / Public Library of Science}, volume = {17}, journal = {PLOS ONE / Public Library of Science}, number = {11}, editor = {Cattaneo, Luigi}, publisher = {Plos}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0278051}, pages = {e0278051}, year = {2022}, abstract = {Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity.}, language = {en} } @incollection{DachwaldUlamecKowalskietal.2023, author = {Dachwald, Bernd and Ulamec, Stephan and Kowalski, Julia and Boxberg, Marc S. and Baader, Fabian and Biele, Jens and K{\"o}mle, Norbert}, title = {Ice melting probes}, series = {Handbook of Space Resources}, booktitle = {Handbook of Space Resources}, editor = {Badescu, Viorel and Zacny, Kris and Bar-Cohen, Yoseph}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-97912-6 (Print)}, doi = {10.1007/978-3-030-97913-3_29}, pages = {955 -- 996}, year = {2023}, abstract = {The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests.}, language = {en} } @article{KuchlerGuenthnerRibeiroetal.2023, author = {Kuchler, Timon and G{\"u}nthner, Roman and Ribeiro, Andrea and Hausinger, Renate and Streese, Lukas and W{\"o}hnl, Anna and Kesseler, Veronika and Negele, Johanna and Assali, Tarek and Carbajo-Lozoya, Javier and Lech, Maciej and Adorjan, Kristina and Stubbe, Hans Christian and Hanssen, Henner and Kotliar, Konstantin and Haller, Berhard and Heemann, Uwe and Schmaderer, Christoph}, title = {Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation}, volume = {26}, publisher = {Springer Nature}, address = {Dordrecht}, doi = {10.1007/s10456-023-09885-6}, pages = {547 -- 563}, year = {2023}, abstract = {Background Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians. Methods In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n = 41, matched out of n = 204). Measurements and main results PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vFID; 3.42\% ± 1.77\% vs. 4.64\% ± 2.59\%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5-190.2] vs. 189.1 [179.4-197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8-0.9] vs. 0.88 [0.8-0.9], p = 0.007). When combining AVR and vFID, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R = - 0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters. Conclusion Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management.}, language = {en} } @incollection{GohTopcuMadabhushietal.2024, author = {Goh, Kheng Lim and Top{\c{c}}u, Murat and Madabhushi, Gopal S. P. and Staat, Manfred}, title = {Collagen fibril reinforcement in connective tissue extracellular matrices}, series = {Handbook of the extracellular matrix}, booktitle = {Handbook of the extracellular matrix}, editor = {Maia, Fatima Raquel Azevedo and Miguel Oliveira, J. and Reis, Rui L.}, publisher = {Springer Nature}, address = {Cham}, isbn = {978-3-031-56362-1 (Print)}, doi = {10.1007/978-3-031-56363-8_6}, pages = {89 -- 108}, year = {2024}, abstract = {The connective tissues such as tendons contain an extracellular matrix (ECM) comprising collagen fibrils scattered within the ground substance. These fibrils are instrumental in lending mechanical stability to tissues. Unfortunately, our understanding of how collagen fibrils reinforce the ECM remains limited, with no direct experimental evidence substantiating current theories. Earlier theoretical studies on collagen fibril reinforcement in the ECM have relied predominantly on the assumption of uniform cylindrical fibers, which is inadequate for modelling collagen fibrils, which possessed tapered ends. Recently, Top{\c{c}}u and colleagues published a paper in the International Journal of Solids and Structures, presenting a generalized shear-lag theory for the transfer of elastic stress between the matrix and fibers with tapered ends. This paper is a positive step towards comprehending the mechanics of the ECM and makes a valuable contribution to formulating a complete theory of collagen fibril reinforcement in the ECM.}, language = {en} } @article{WaldvogelFreylerHelmetal.2023, author = {Waldvogel, Janice and Freyler, Kathrin and Helm, Michael and Monti, Elena and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco V. and Ritzmann, Ramona and Albracht, Kirsten}, title = {Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks}, series = {Journal of Applied Physiology}, volume = {134}, journal = {Journal of Applied Physiology}, number = {1}, publisher = {American Physiological Society}, address = {Bethesda, Md.}, issn = {1522-1601 (Onlineausgabe)}, doi = {10.1152/japplphysiol.00279.2022}, pages = {190 -- 202}, year = {2023}, abstract = {This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.}, language = {en} }