@article{UllrichGrottkeRossaintetal.2010, author = {Ullrich, Sebastian and Grottke, Oliver and Rossaint, Rolf and Staat, Manfred and Deserno, Thomas M. and Kuhlen, Torsten}, title = {Virtual Needle Simulation with Haptics for Regional Anaesthesia}, pages = {3 Seiten}, year = {2010}, language = {en} } @article{GrottkeBraunschweigPhilippenetal.2010, author = {Grottke, O. and Braunschweig, T. and Philippen, B. and Gatzweiler, Karl-Heinz and Gronloh, N. and Staat, Manfred and Rossaint, R. and Tolba, R.}, title = {A new model for blunt liver injuries in the swine}, series = {European Surgical Research}, volume = {44}, journal = {European Surgical Research}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1421-9921}, doi = {10.1159/000265053}, pages = {65 -- 73}, year = {2010}, abstract = {Background: To elaborate the impact of new haemostatic agents we developed an instrument for the pressure-controlled induction of blunt liver injuries in a porcine animal model. Materials and Methods: A dilutional coagulopathy of 80\% of animal blood volume was induced in 9 anaesthetized pigs. Animals were randomly assigned to be injured with a force of 112 Newton (N) (n = 1), 224 ± 19 N (n = 4) or 355 ± 35 N (n = 4). The impact of injury was measured by blood loss, survival time and coagulation parameters. Liver histology was obtained to evaluate the degree of liver injury. Results: The profound haemodilution resulted in a significant alteration of all coagulation parameters. After inflicting the injury with 355 ± 35 N, both the survival time (30 ± 9 min; p = 0.006) and blood loss (68 ± 16 ml min-1, p = 0.002) were significantly different as compared to injuries with 224 ± 19 N (survival time: 76 ± 20 min, blood loss: 23 ± 4 ml min-1). In contrast, an injury with 112 N led to an insignificant blood loss of only 239 ml. Conclusion: We developed a pressure-controlled clamp that allows for the induction of blunt liver traumas with highly reproducible injuries with a positive correlation with blood loss and survival.}, language = {en} } @article{ZhubanovaAknazarovMansurovetal.2010, author = {Zhubanova, Azhar A. and Aknazarov, S. K. and Mansurov, Zulkhair and Digel, Ilya and Kozhalakova, A. A. and Akimbekov, Nuraly S. and O'Heras, Carlos and Tazhibayeva, S. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Adsorption of bacterial Lipopolysaccharides and blood plasma proteins on modified carbonized materials}, year = {2010}, abstract = {Bacterial lipopolysaccharides (endotoxins) show strong biological effects at very low concentrations in human beings and many animals when entering the blood stream. These include affecting structure and function of organs and cells, changing metabolic functions, raising body temperature, triggering the coagulation cascade, modifying hemodynamics and causing septic shock. Because of this toxicity, the removal of even minute amounts is essential for safe parenteral administration of drugs and also for septic shock patients' care. The absence of a general method for endotoxin removal from liquid interfaces urgently requires finding new methods and materials to overcome this gap. Nanostructured carbonized plant parts is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study was comparative measurement of endotoxin- and blood proteins-related adsorption rate and adsorption capacity for different carboneous materials produced at different temperatures and under different surface modifications. As a main surface modificator, positively cbarged polymer, polyethileneimine (PEl) was used. Activated carbon materials showed good adsorption properties for LPS and some proteins used in the experiments. During the batch experiments, several techniques (dust removal, autoclaving) were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. Modification of the surface apparently has not affected hemoglobin binding to the adsorbent's surface. Obtained adsorption isotherms can be used as a powerful tool for designing of future column-based setups for blood purification from LPS, which is especially important for septic shock treatment.}, subject = {Kohlenstofffaser}, language = {en} }