@article{ManfredMaySutter2020, author = {Manfred, Enning and May, J{\"o}rg and Sutter, Stefan}, title = {Innovation am G{\"u}terwagen am Beispiel der Automatischen Bremsprobe}, series = {ETR - Eisenbahntechnische Rundschau}, journal = {ETR - Eisenbahntechnische Rundschau}, number = {12}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2845}, pages = {14 -- 19}, year = {2020}, abstract = {Mit der Digitalen Automatischen Kupplung beginnt ein neues Kapitel des Schieneng{\"u}terverkehrs, in dem zusammengestellte Wagen sich automatisch in wenigen Minuten abfahrbereit machen, ohne dass der Mensch eingreifen muss. Eines des gr{\"o}ßten Hemmnisse der umweltfreundlichen Schiene wird dann entfallen. Notwendig ist jetzt eine Diskussion {\"u}ber den Umfang und die Systemgrenzen der Automatischen Bremsprobe.}, language = {de} } @article{AsarStapenhorst2020, author = {Asar, Hande and Stapenhorst, Carolin}, title = {Zvi Hecker: Drawing on drawing}, series = {Archives of Design Research}, volume = {33}, journal = {Archives of Design Research}, number = {3}, publisher = {Korean Society of Design Science}, address = {Seongnam}, issn = {1226-8046}, doi = {10.15187/adr.2020.08.33.3.45}, pages = {45 -- 53}, year = {2020}, abstract = {Background: Architectural representation, nurtured by the interaction between design thinking and design action, is inherently multi-layered. However, the representation object cannot always reflect these layers. Therefore, it is claimed that these reflections and layerings can gain visibility through 'performativity in personal knowledge', which basically has a performative character. The specific layers of representation produced during the performativity in personal knowledge permit insights about the 'personal way of designing' [1]. Therefore, the question, 'how can these layered drawings be decomposed to understand the personal way of designing', can be defined as the beginning of the study. On the other hand, performativity in personal knowledge in architectural design is handled through the relationship between explicit and tacit knowledge and representational and non-representational theory. To discuss the practical dimension of these theoretical relations, Zvi Hecker's drawing of the Heinz-Galinski-School is examined as an example. The study aims to understand the relationships between the layers by decomposing a layered drawing analytically in order to exemplify personal ways of designing. Methods: The study is based on qualitative research methodologies. First, a model has been formed through theoretical readings to discuss the performativity in personal knowledge. This model is used to understand the layered representations and to research the personal way of designing. Thus, one drawing of Hecker's Heinz-Galinski-School project is chosen. Second, its layers are decomposed to detect and analyze diverse objects, which hint to different types of design tools and their application. Third, Zvi Hecker's statements of the design process are explained through the interview data [2] and other sources. The obtained data are compared with each other. Results: By decomposing the drawing, eleven layers are defined. These layers are used to understand the relation between the design idea and its representation. They can also be thought of as a reading system. In other words, a method to discuss Hecker's performativity in personal knowledge is developed. Furthermore, the layers and their interconnections are described in relation to Zvi Hecker's personal way of designing. Conclusions: It can be said that layered representations, which are associated with the multilayered structure of performativity in personal knowledge, form the personal way of designing.}, language = {en} } @article{StapenhorstDutto2020, author = {Stapenhorst, Carolin and Dutto, Andrea Alberto}, title = {Turin: Industriedenkmal wird Kulturzentrum wird Lazarett}, series = {Bauwelt}, volume = {111}, journal = {Bauwelt}, number = {13}, publisher = {Bauverlag BV}, address = {G{\"u}tersloh}, issn = {0005-6855}, pages = {56 -- 59}, year = {2020}, language = {de} } @incollection{AtmaneHirechKassmietal.2020, author = {Atmane, Ilias and Hirech, Kamal and Kassmi, K. and Mahdi, Zahra and Alexopoulos, Spiros and Schwarzer, Klemens and Chayeb, H. and Bachiri, N.}, title = {Design and realization of a pilot solar desalination plant in Douar El Hamri in the province of Berkane (Morocco)}, series = {Sustainable entrepreneurship, renewable energy-based projects, and digitalization}, booktitle = {Sustainable entrepreneurship, renewable energy-based projects, and digitalization}, editor = {Omrane, Amina and Kassmi, Khalil and Akram, Muhammad Wasim and Khanna, Ashish and Mostafiz, Imtiaz}, publisher = {CRC Press}, address = {Boca Raton, Fa.}, isbn = {9781000292541 (E-Book)}, pages = {18 Seiten}, year = {2020}, abstract = {Producing fresh water from saline water has become one of the most difficult challenges to overcome especially with the high demand and shortage of fresh water. In this context, as part of a collaboration with Germany, the authors propose a design and implementation of a pilot multi-stage solar desalination system (MSD), remotely controlled, at Douar Al Hamri in the rural town of Boughriba in the province of Berkane, Morocco. More specifically, they present their contribution on the remote control and supervision system, which makes the functioning of the MSD system reliable and guarantees the production of drinking water for the population of Douar. The results obtained show that the electronic cards and computer communication software implemented allow the acquisition of all electrical (currents, voltages, powers, yields), thermal (temperatures of each stage), and meteorological (irradiance and ambient temperature), remote control and maintenance (switching on, off, data transfer). By comparing with the literature carried out in the field of solar energy, the authors conclude that the MSD and electronic desalination systems realized during this work represent a contribution in terms of the reliability and durability of providing drinking water in rural and urban areas.}, language = {en} } @misc{MachadoDahmannKeimeretal.2020, author = {Machado, Patricia Almeida and Dahmann, Peter and Keimer, Jona and Saretzki, Charlotte and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Stress profile and individual workload monitoring in general aviation pilots - an experiment's setting}, series = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, journal = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, doi = {10.55225/hppa.156}, year = {2020}, language = {en} } @misc{EcclestonDrummondMiddletonetal.2020, author = {Eccleston, Paul and Drummond, Rachel and Middleton, Kevin and Bishop, Georgia and Caldwell, Andrew and Desjonqueres, Lucile and Tosh, Ian and Cann, Nick and Crook, Martin and Hills, Matthew and Pearson, Chris and Simpson, Caroline and Stamper, Richard and Tinetti, Giovanna and Pascale, Enzo and Swain, Mark and Holmes, Warren A. and Wong, Andre and Puig, Ludovic and Pilbratt, G{\"o}ran and Linder, Martin and Boudin, Nathalie and Ertel, Hanno and Gambicorti, Lisa and Halain, Jean-Philippe and Pace, Emanuele and Vilardell, Francesc and G{\´o}mez, Jos{\´e} M. and Colom{\´e}, Josep and Amiaux, J{\´e}r{\^o}me and Cara, Christophe and Berthe, Michel and Moreau, Vincent and Morgante, Gianluca and Malaguti, Giuseppe and Alonso, Gustavo and {\´A}lvarez, Javier P. and Ollivier, Marc and Philippon, Anne and Hellin, Marie-Laure and Roose, Steve and Frericks, Martin and Krijger, Matthijs and Rataj, Miroslaw and Wawer, Piotr and Skup, Konrad and Sobiecki, Mateusz and Christian Jessen, Niels and M{\o}ller Pedersen, S{\o}ren and Hargrave, Peter and Griffin, Matt and Ottensamer, Roland and Hunt, Thomas and Rust, Duncan and Saleh, Aymen and Winter, Berend and Focardi, Mauro and Da Deppo, Vania and Zuppella, Paola and Czupalla, Markus}, title = {The ARIEL payload: A technical overview}, series = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, volume = {11443}, journal = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, editor = {Lystrup, Makenzie and Perrin, Marshall D. and Batalha, Natalie and Siegler, Nicholas and Tong, Edward C.}, publisher = {SPIE}, address = {Washington}, doi = {10.1117/12.2561478}, pages = {114430Z}, year = {2020}, abstract = {The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems.}, language = {en} } @article{KleefeldPieronek2020, author = {Kleefeld, Andreas and Pieronek, J.}, title = {Elastic transmission eigenvalues and their computation via the method of fundamental solutions}, series = {Applicable Analysis}, volume = {100}, journal = {Applicable Analysis}, number = {16}, publisher = {Taylore \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2020.1721473}, pages = {3445 -- 3462}, year = {2020}, abstract = {A stabilized version of the fundamental solution method to catch ill-conditioning effects is investigated with focus on the computation of complex-valued elastic interior transmission eigenvalues in two dimensions for homogeneous and isotropic media. Its algorithm can be implemented very shortly and adopts to many similar partial differential equation-based eigenproblems as long as the underlying fundamental solution function can be easily generated. We develop a corroborative approximation analysis which also implicates new basic results for transmission eigenfunctions and present some numerical examples which together prove successful feasibility of our eigenvalue recovery approach.}, language = {en} } @incollection{AbeleKleefeld2020, author = {Abele, Daniel and Kleefeld, Andreas}, title = {New Numerical Results for the Optimization of Neumann Eigenvalues}, series = {Computational and Analytic Methods in Science and Engineering}, booktitle = {Computational and Analytic Methods in Science and Engineering}, editor = {Constanda, Christian}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-030-48185-8 (Print)}, doi = {10.1007/978-3-030-48186-5_1}, pages = {1 -- 20}, year = {2020}, abstract = {We present new numerical results for shape optimization problems of interior Neumann eigenvalues. This field is not well understood from a theoretical standpoint. The existence of shape maximizers is not proven beyond the first two eigenvalues, so we study the problem numerically. We describe a method to compute the eigenvalues for a given shape that combines the boundary element method with an algorithm for nonlinear eigenvalues. As numerical optimization requires many such evaluations, we put a focus on the efficiency of the method and the implemented routine. The method is well suited for parallelization. Using the resulting fast routines and a specialized parametrization of the shapes, we found improved maxima for several eigenvalues.}, language = {en} } @misc{BurgethKleefeldNaegeletal.2020, author = {Burgeth, Bernhard and Kleefeld, Andreas and Naegel, Beno{\^i}t and Perret, Benjamin}, title = {Editorial — Special Issue: ISMM 2019}, series = {Mathematical Morphology - Theory and Applications}, volume = {4}, journal = {Mathematical Morphology - Theory and Applications}, number = {1}, publisher = {De Gruyter}, address = {Warschau}, issn = {2353-3390}, doi = {10.1515/mathm-2020-0200}, pages = {159 -- 161}, year = {2020}, abstract = {This editorial presents the Special Issue dedicated to the conference ISMM 2019 and summarizes the articles published in this Special Issue.}, language = {en} } @article{MartinVaqueroKleefeld2020, author = {Mart{\´i}n-Vaquero, J. and Kleefeld, Andreas}, title = {Solving nonlinear parabolic PDEs in several dimensions: Parallelized ESERK codes}, series = {Journal of Computational Physics}, journal = {Journal of Computational Physics}, number = {423}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9991}, doi = {10.1016/j.jcp.2020.109771}, year = {2020}, abstract = {There is a very large number of very important situations which can be modeled with nonlinear parabolic partial differential equations (PDEs) in several dimensions. In general, these PDEs can be solved by discretizing in the spatial variables and transforming them into huge systems of ordinary differential equations (ODEs), which are very stiff. Therefore, standard explicit methods require a large number of iterations to solve stiff problems. But implicit schemes are computationally very expensive when solving huge systems of nonlinear ODEs. Several families of Extrapolated Stabilized Explicit Runge-Kutta schemes (ESERK) with different order of accuracy (3 to 6) are derived and analyzed in this work. They are explicit methods, with stability regions extended, along the negative real semi-axis, quadratically with respect to the number of stages s, hence they can be considered to solve stiff problems much faster than traditional explicit schemes. Additionally, they allow the adaptation of the step length easily with a very small cost. Two new families of ESERK schemes (ESERK3 and ESERK6) are derived, and analyzed, in this work. Each family has more than 50 new schemes, with up to 84.000 stages in the case of ESERK6. For the first time, we also parallelized all these new variable step length and variable number of stages algorithms (ESERK3, ESERK4, ESERK5, and ESERK6). These parallelized strategies allow to decrease times significantly, as it is discussed and also shown numerically in two problems. Thus, the new codes provide very good results compared to other well-known ODE solvers. Finally, a new strategy is proposed to increase the efficiency of these schemes, and it is discussed the idea of combining ESERK families in one code, because typically, stiff problems have different zones and according to them and the requested tolerance the optimum order of convergence is different.}, language = {en} }