@article{FunkeBoernerFalketal.2011, author = {Funke, Harald and B{\"o}rner, Sebastian and Falk, F. and Hendrick, P.}, title = {Control system modifications and their effects on the operation of a hydrogen-fueled Auxiliary Power Unit}, series = {XX international symposium on air breathing engines 2011 : ISABE 2011, Gothenburg, Sweden, 12-16 September, 2011. Vol. 2.}, journal = {XX international symposium on air breathing engines 2011 : ISABE 2011, Gothenburg, Sweden, 12-16 September, 2011. Vol. 2.}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, VA}, isbn = {9781618391803}, pages = {929 -- 938}, year = {2011}, language = {en} } @article{FunkeBoernerKrebsetal.2011, author = {Funke, Harald and B{\"o}rner, Sebastian and Krebs, W. and Wolf, E.}, title = {Experimental Characterization of Low NOx Micromix Prototype Combustors for Industrial Gas Turbine Applications}, series = {ASME Turbo Expo 2011 ; Vancouver, Canada, June 6-10, 2011}, journal = {ASME Turbo Expo 2011 ; Vancouver, Canada, June 6-10, 2011}, year = {2011}, language = {en} } @article{FunkeReckerBosschaertsetal.2011, author = {Funke, Harald and Recker, E. and Bosschaerts, W. and Boonen, Q. and B{\"o}rner, Sebastian}, title = {Parametrical study of the „Micromix" hydrogen combustion principle}, series = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, journal = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, year = {2011}, language = {en} } @article{EschFunkeRoosenetal.2011, author = {Esch, Thomas and Funke, Harald and Roosen, Peter and Jarolimek, Ulrich}, title = {Biogenic Vehicle Fuels in General Aviation Aircrafts}, series = {MTZ worldwide. 72 (2011), H. 1}, journal = {MTZ worldwide. 72 (2011), H. 1}, publisher = {Springer Automotive Media}, address = {Wiesbaden}, pages = {38 -- 43}, year = {2011}, language = {en} } @article{BuehlerChristenKowalskietal.2011, author = {B{\"u}hler, Yves and Christen, Marc and Kowalski, Julia and Bartelt, Perry}, title = {Sensitivity of snow avalanche simulations to digital elevation model quality and resolution}, series = {Annals of Glaciology}, volume = {52}, journal = {Annals of Glaciology}, number = {58}, publisher = {Cambridge University Press}, address = {Cambridge}, isbn = {1727-5644}, pages = {72 -- 80}, year = {2011}, abstract = {Digital elevation models (DEMs), represent the three-dimensional terrain and are the basic input for numerical snow avalanche dynamics simulations. DEMs can be acquired using topographic maps or remote-sensing technologies, such as photogrammetry or lidar. Depending on the acquisition technique, different spatial resolutions and qualities are achieved. However, there is a lack of studies that investigate the sensitivity of snow avalanche simulation algorithms to the quality and resolution of DEMs. Here, we perform calculations using the numerical avalance dynamics model RAMMS, varying the quality and spatial resolution of the underlying DEMs, while holding the simulation parameters constant. We study both channelized and open-terrain avalanche tracks with variable roughness. To quantify the variance of these simulations, we use well-documented large-scale avalanche events from Davos, Switzerland (winter 2007/08), and from our large-scale avalanche test site, Valĺee de la Sionne (winter 2005/06). We find that the DEM resolution and quality is critical for modeled flow paths, run-out distances, deposits, velocities and impact pressures. Although a spatial resolution of ~25 m is sufficient for large-scale avalanche modeling, the DEM datasets must be checked carefully for anomalies and artifacts before using them for dynamics calculations.}, language = {en} } @inproceedings{OlaruKowalskiSethietal.2011, author = {Olaru, Alexandra Maria and Kowalski, Julia and Sethi, Vaishali and Bl{\"u}mich, Bernhard}, title = {Fluid Transport in Porous Media probed by Relaxation-Exchange NMR}, series = {2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.}, booktitle = {2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.}, year = {2011}, language = {en} } @incollection{FunkeBoernerHendricketal.2011, author = {Funke, Harald and B{\"o}rner, Sebastian and Hendrick, P. and Recker, E.}, title = {Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine}, series = {Progress in Propulsion Physics. Vol. 2}, booktitle = {Progress in Propulsion Physics. Vol. 2}, publisher = {EDP Sciences}, address = {Les Ulis}, isbn = {978-2-7598-0673-7}, pages = {475 -- 486}, year = {2011}, language = {en} } @inproceedings{ThenentDahmann2011, author = {Thenent, N. E. and Dahmann, Peter}, title = {Increasing aircraft design flexibility - The development of a hydrostatic transmission for gliders with self-launching capability}, series = {Deutscher Luft- und Raumfahrtkongress 2011 : Bremen, 27. bis 29. September 2011 ; Tagungsband}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2011 : Bremen, 27. bis 29. September 2011 ; Tagungsband}, publisher = {Dt. Gesellschaft f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, isbn = {978-3-9321-8274-7}, pages = {865 -- 883}, year = {2011}, language = {en} } @inproceedings{ThenentDahmann2011, author = {Thenent, N. E. and Dahmann, Peter}, title = {Hydrostatic propeller drive}, series = {Proceedings of the conference : 18 - 20 May, 2011 Tampere, Finland / the Twelth Scandinavian International Conference on Fluid Power, SICFP'11. Ed.: Harri Sairiala ... Vol. 1}, booktitle = {Proceedings of the conference : 18 - 20 May, 2011 Tampere, Finland / the Twelth Scandinavian International Conference on Fluid Power, SICFP'11. Ed.: Harri Sairiala ... Vol. 1}, address = {Tampere}, isbn = {978-952-15-2517-9}, pages = {217 -- 227}, year = {2011}, language = {en} } @inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert}, title = {IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier}, series = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, booktitle = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, language = {en} } @inproceedings{LoebSchartnerDachwaldetal.2011, author = {Loeb, Horst W. and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {An Interstellar - Heliopause mission using a combination of solar/radioisotope electric propulsion}, series = {Presented at the 32nd International Electric Propulsion Conference}, booktitle = {Presented at the 32nd International Electric Propulsion Conference}, pages = {1 -- 7}, year = {2011}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter "RIT-22"ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter "RIT-10" ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our "InTrance" method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification.}, language = {en} } @inproceedings{OhndorfDachwaldSeboldtetal.2011, author = {Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang and Schartner, Karl-Heinz}, title = {Flight times to the heliopause using a combination of solar and radioisotope electric propulsion}, series = {32nd International Electric Propulsion Conference}, booktitle = {32nd International Electric Propulsion Conference}, pages = {1 -- 12}, year = {2011}, abstract = {We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere's "nose".}, language = {en} } @inproceedings{DachwaldMikuckiTulaczyketal.2012, author = {Dachwald, Bernd and Mikucki, Jill A. and Tulaczyk, Slawek and Digel, Ilya and Feldmann, Marco and Espe, Clemens and Plescher, Engelbert and Xu, Changsheng}, title = {IceMole - a maneuverable probe for clean in-situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems : extended abstract / SCAR Open Science Conference 2012, Session 29: Advancing Clean Technologies for Exploration of Glacial Aquatic Ecosystems}, year = {2012}, abstract = {The "IceMole" is a novel maneuverable subsurface ice probe for clean in-situ analysis and sampling of subsurface ice and subglacial water/brine. It is developed and build at FH Aachen University of Applied Sciences' Astronautical Laboratory. A first prototype was successfully tested on the Swiss Morteratsch glacier in 2010. Clean sampling is achieved with a hollow ice screw (as it is used in mountaineering) at the tip of the probe. Maneuverability is achieved with a differentially heated melting head. Funded by the German Space Agency (DLR), a consortium led by FH Aachen currently develops a much more advanced IceMole probe, which includes a sophisticated system for obstacle avoidance, target detection, and navigation in the ice. We intend to use this probe for taking clean samples of subglacial brine at the Blood Falls (McMurdo Dry Valleys, East Antarctica) for chemical and microbiological analysis. In our conference contribution, we 1) describe the IceMole design, 2) report the results of the field tests of the first prototype on the Morteratsch glacier, 3) discuss the probe's potential for the clean in-situ analysis and sampling of subsurface ice and subglacial liquids, and 4) outline the way ahead in the development of this technology.}, subject = {Eisschicht}, language = {en} } @misc{BaumgartnerWunderlichJaunichetal.2012, author = {Baumgartner, Thomas and Wunderlich, Florian and Jaunich, Arthur and Sato, Tomoo and Bundy, Georg and Grießmann, Nadine and Kowalski, Julia and Burghardt, Stefan and Hanebrink, J{\"o}rg}, title = {Lighting the way: Perspectives on the global lighting market}, edition = {2nd ed.}, address = {McKinsey}, pages = {58}, year = {2012}, language = {en} } @article{OlaruKowalskiSethietal.2012, author = {Olaru, Alexandra Maria and Kowalski, Julia and Sethi, Vaishali and Bl{\"u}mich, Bernhard}, title = {Exchange relaxometry of flow at small P{\´e}clet numbers in a glass bead pack}, series = {Journal of Magnetic Resonance (JMR)}, volume = {220}, journal = {Journal of Magnetic Resonance (JMR)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1096-0856}, doi = {10.1016/j.jmr.2012.04.015}, pages = {32 -- 44}, year = {2012}, abstract = {In this paper we consider low P{\´e}clet number flow in bead packs. A series of relaxation exchange experiments has been conducted and evaluated by ILT analysis. In the resulting correlation maps, we observed a collapse of the signal and a translation towards smaller relaxation times with increasing flow rates, as well as a signal tilt with respect to the diagonal. In the discussion of the phenomena we present a mathematical theory for relaxation exchange experiments that considers both diffusive and advective transport. We perform simulations based on this theory and discuss them with respect to the conducted experiments.}, language = {en} } @article{FischerKowalskiPudasaini2012, author = {Fischer, Jan-Thomas and Kowalski, Julia and Pudasaini, Shiva P.}, title = {Topographic curvature effects in applied avalanche modelling}, series = {Cold Regions Science and Technology}, volume = {74-75}, journal = {Cold Regions Science and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7441}, doi = {10.1016/j.coldregions.2012.01.005}, pages = {21 -- 30}, year = {2012}, abstract = {This paper describes the implementation of topographic curvature effects within the RApid Mass MovementS (RAMMS) snow avalanche simulation toolbox. RAMMS is based on a model similar to shallow water equations with a Coulomb friction relation and the velocity dependent Voellmy drag. It is used for snow avalanche risk assessment in Switzerland. The snow avalanche simulation relies on back calculation of observed avalanches. The calibration of the friction parameters depends on characteristics of the avalanche track. The topographic curvature terms are not yet included in the above mentioned classical model. Here, we fundamentally improve this model by mathematically and physically including the topographic curvature effects. By decomposing the velocity dependent friction into a topography dependent term that accounts for a curvature enhancement in the Coulomb friction, and a topography independent contribution similar to the classical Voellmy drag, we construct a general curvature dependent frictional resistance, and thus propose new extended model equations. With three site-specific examples, we compare the apparent frictional resistance of the new approach, which includes topographic curvature effects, to the classical one. Our simulation results demonstrate substantial effects of the curvature on the flow dynamics e.g., the dynamic pressure distribution along the slope. The comparison of resistance coefficients between the two models demonstrates that the physically based extension presents an improvement to the classical approach. Furthermore a practical example highlights its influence on the pressure outline in the run out zone of the avalanche. Snow avalanche dynamics modeling natural terrain curvature centrifugal force friction coefficients.}, language = {en} } @book{JanserHavermann2012, author = {Janser, Frank and Havermann, Marc}, title = {Inkompressible Str{\"o}mungen}, publisher = {Mainz}, address = {Aachen}, isbn = {978-3-86130-446-3}, pages = {189 S. : Ill., graph. Darst.}, year = {2012}, language = {en} } @inproceedings{FunkeBoernerKeinzetal.2012, author = {Funke, Harald and B{\"o}rner, Sebastian and Keinz, Jan and Kusterer, K. and Kroninger, D. and Kitajima, J. and Kazari, M. and Horikama, A.}, title = {Numerical and experimental characterization of low NOx Micromix combustion principle for industrial hydrogen gas turbine applications}, series = {Proceedings of ASME Turbo Expo 2012}, booktitle = {Proceedings of ASME Turbo Expo 2012}, pages = {11}, year = {2012}, language = {en} } @inproceedings{FunkeBoernerKeinzetal.2012, author = {Funke, Harald and B{\"o}rner, Sebastian and Keinz, Jan and Hendrick, P. and Recker, E.}, title = {Low NOx Hydrogen combustion chamber for industrial gas turbine applications", 14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery}, series = {ISROMAC-14 : the Forteenth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ; Honolulu, Hawaii, February 27 - March 02nd, 2012}, booktitle = {ISROMAC-14 : the Forteenth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ; Honolulu, Hawaii, February 27 - March 02nd, 2012}, year = {2012}, language = {en} } @inproceedings{DachwaldFeldmannEspeetal.2012, author = {Dachwald, Bernd and Feldmann, Marco and Espe, Clemens and Plescher, Engelbert and Konstantinidis, K. and Forstner, R.}, title = {Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice}, series = {63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3)}, booktitle = {63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3)}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Astronautical Congress <63, 2012, Napoli>}, isbn = {978-1-62276-979-7}, pages = {1756 -- 1766}, year = {2012}, language = {en} } @incollection{BorggrafeOhndorfDachwaldetal.2012, author = {Borggrafe, Andreas and Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang}, title = {Analysis of interplanetary solar sail trajectories with attitude dynamics}, series = {Dynamics and Control of Space Systems 2012}, booktitle = {Dynamics and Control of Space Systems 2012}, publisher = {Univelt Inc}, address = {San Diego}, isbn = {978-0-87703-587-9}, pages = {1553 -- 1569}, year = {2012}, abstract = {We present a new approach to the problem of optimal control of solar sails for low-thrust trajectory optimization. The objective was to find the required control torque magnitudes in order to steer a solar sail in interplanetary space. A new steering strategy, controlling the solar sail with generic torques applied about the spacecraft body axes, is integrated into the existing low-thrust trajectory optimization software InTrance. This software combines artificial neural networks and evolutionary algorithms to find steering strategies close to the global optimum without an initial guess. Furthermore, we implement a three rotational degree-of-freedom rigid-body attitude dynamics model to represent the solar sail in space. Two interplanetary transfers to Mars and Neptune are chosen to represent typical future solar sail mission scenarios. The results found with the new steering strategy are compared to the existing reference trajectories without attitude dynamics. The resulting control torques required to accomplish the missions are investigated, as they pose the primary requirements to a real on-board attitude control system.}, language = {en} } @article{LoebSchartnerDachwaldetal.2012, author = {Loeb, Horst Wolfgang and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {Interstellar heliopause probe}, series = {Труды МАИ}, journal = {Труды МАИ}, number = {60}, publisher = {Moskauer Staatliches Luftfahrtinstitut (МАИ)}, address = {Moskau}, pages = {2 -- 2}, year = {2012}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft traveling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by European Space Agency (ESA). Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope-electric propulsion (REP). As a further alternative, we here investigate a combination of solar-electric propulsion (SEP) and REP. The SEP stage consists of six 22-cms diameter RIT-22 ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW at begin of mission (BOM) is provided by a lightweight solar array.}, language = {en} } @inproceedings{FunkeBoernerHendricketal.2013, author = {Funke, Harald and B{\"o}rner, Sebastian and Hendrick, P. and Recker, E. and Elsing, R.}, title = {Development and integration of a scalable low NOx combustion chamber for a hydrogen fuelled aero gas turbine}, series = {Progress in Propulsion Physics. - Vol. 4}, booktitle = {Progress in Propulsion Physics. - Vol. 4}, editor = {DeLuca, Luigi T.}, publisher = {EDP Sciences}, address = {[Les Ulis]}, isbn = {978-2-7598-0876-2}, doi = {10.1051/eucass/201304357}, pages = {357 -- 372}, year = {2013}, language = {en} } @article{KowalskiMcElwaine2013, author = {Kowalski, Julia and McElwaine, Jim N.}, title = {Shallow two-component gravity-driven flows with vertical variation}, series = {Journal of Fluid Mechanics}, volume = {714}, journal = {Journal of Fluid Mechanics}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, isbn = {0022-1120}, pages = {434 -- 462}, year = {2013}, language = {en} } @incollection{DachwaldUlamecBiele2013, author = {Dachwald, Bernd and Ulamec, Stephan and Biele, Jens}, title = {Clean in situ subsurface exploration of icy environments in the solar system}, series = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, booktitle = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-6545-0 (Druckausgabe)}, pages = {367 -- 397}, year = {2013}, abstract = {"To assess the habitability of the icy environments in the solar system, for example, on Mars, Europa, and Enceladus, the scientific analysis of material embedded in or underneath their ice layers is very important. We consider self-steering robotic ice melting probes to be the best method to cleanly access these environments, that is, in compliance with planetary protection standards. The required technologies are currently developed and tested."}, language = {en} } @inproceedings{HoeflingSchirraSpohretal.2013, author = {Hoefling, J. and Schirra, Julian and Spohr, A. and Sch{\"a}fer, D.}, title = {Induced drag computation with wake model schemes for highly non-planar wing systems}, series = {Deutscher Luft- und Raumfahrtkongress 2013 : 10.9. - 12.9.2013, Stuttgart}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2013 : 10.9. - 12.9.2013, Stuttgart}, publisher = {Dt. Ges. f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, organization = {Deutscher Luft- und Raumfahrtkongress <62, 2013, Stuttgart>}, pages = {1 -- 10}, year = {2013}, language = {en} } @article{KraemerDaabMuelleretal.2013, author = {Kr{\"a}mer, Stefan and Daab, Dominique Jonas and M{\"u}ller, Brigitte and Wagner, Tobias and Baader, Fabian and Hessel, Joana and Gdalewitsch, Georg and Plescher, Engelbert and Dachwald, Bernd and Wahle, Michael and Gierse, Andreas and Vetter, Rudolf and Pf{\"u}tzenreuter, Lysan}, title = {Development and flight-testing of a system to isolate vibrations for microgravity experiments on sounding rockets}, series = {21st ESA Symposium on Rocket and Balloon Research}, journal = {21st ESA Symposium on Rocket and Balloon Research}, pages = {1 -- 8}, year = {2013}, language = {en} } @inproceedings{SpohrSchirraHoeflingetal.2013, author = {Spohr, A. and Schirra, Julian and Hoefling, J. and Schedl, A.}, title = {Wing weight estimation methodology for highly non-planar lifting systems during conceptual design}, series = {Deutscher Luft- und Raumfahrtkongress 2013 : 10.9. - 12.9.2013, Stuttgart}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2013 : 10.9. - 12.9.2013, Stuttgart}, organization = {Deutscher Luft- und Raumfahrtkongress <62, 2013, Stuttgart>}, pages = {Publ. online}, year = {2013}, language = {en} } @inproceedings{FunkeKeinzBoerneretal.2013, author = {Funke, Harald and Keinz, Jan and B{\"o}rner, Sebastian and Haj Ayed, A. and Kusterer, K. and Tekin, N. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Experimental and numerical characterization of the dry low NOx micromix hydrogen combustion principle at increased energy density for industrial hydrogen gas turbine applications}, series = {Combustion, fuels and emissions : proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition - 2013 ; June 3 - 7, 2013, San Antonio, Texas, USA ; vol. 1}, booktitle = {Combustion, fuels and emissions : proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition - 2013 ; June 3 - 7, 2013, San Antonio, Texas, USA ; vol. 1}, editor = {Song, Seung Jin}, publisher = {ASME}, address = {New York, NY}, organization = {American Society of Mechanical Engineers}, isbn = {978-0-7918-5510-2}, pages = {V001T04A055}, year = {2013}, language = {en} } @inproceedings{SchirraJ2013, author = {Schirra, Julian and J., Watmuff}, title = {Euler-based induced drag estimation for highly non-planar lifting systems during conceptional design}, series = {62. Deutscher Luft- und Raumfahrtkongress 2013 : 10. - 12. September 2032, Stuttgart, Haus der Wirtschaft}, booktitle = {62. Deutscher Luft- und Raumfahrtkongress 2013 : 10. - 12. September 2032, Stuttgart, Haus der Wirtschaft}, publisher = {Dt. Gesellschaft f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt - Lilienthal-Oberth}, pages = {1 -- 8}, year = {2013}, language = {en} } @inproceedings{KonstantinidisDachwaldOhndorfetal.2013, author = {Konstantinidis, K. and Dachwald, Bernd and Ohndorf, A. and Dykta, P. and Voigt, K. and F{\"o}rstner, R.}, title = {Enceladus explorer (ENEX): A lander mission to probe subglacial water pockets on Saturn's moon enceladus for life}, series = {64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2)}, booktitle = {64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2)}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Astronautical Congress <64, 2013, Beijing>}, isbn = {978-1-62993-909-4}, pages = {1340 -- 1350}, year = {2013}, language = {en} } @book{BenkoePlescher2013, author = {Benk{\"o}, Marietta and Plescher, Engelbert}, title = {Space law: reconsidering the definition/delimitation question and the passage of spacecraft through foreign airspace. (Essential air and space law ; 12)}, publisher = {Eleven International Publishing}, address = {The Hague}, isbn = {9789462360761 ; 9462360766 ; 9789460948176}, pages = {VII, 159 S.}, year = {2013}, language = {en} } @phdthesis{Boerner2013, author = {B{\"o}rner, Sebastian}, title = {Optimization and testing of a low NOx hydrogen fuelled gas turbine}, publisher = {Universit{\´e} Libre de Bruxelles}, address = {Bruxelles}, pages = {XVI, 144 S.}, year = {2013}, language = {en} } @article{BindalSharmaJanseretal.2013, author = {Bindal, Gaurav and Sharma, Sparsh and Janser, Frank and Neu, Eugen}, title = {Detailed analysis of variables affecting wing kinematics of bat flight}, series = {SAE International Journal of Aerospace}, volume = {6}, journal = {SAE International Journal of Aerospace}, number = {2}, issn = {1946-3901}, doi = {10.4271/2013-01-9003}, pages = {811 -- 818}, year = {2013}, language = {en} } @inproceedings{GierseKraemerDaabetal.2013, author = {Gierse, Andreas and Kr{\"a}mer, Stefan and Daab, Dominique J. and Hessel, Joana and Baader, Fabian and M{\"u}ller, Brigitte S. and Wagner, Tobias and Gdalewitsch, Georg and Plescher, Engelbert and Pf{\"u}tzenreuter, Lysan}, title = {Experimental in-flight modal-analysis of a sounding rocket structure}, series = {21st ESA Symposium on Rocket and Ballon related Research}, booktitle = {21st ESA Symposium on Rocket and Ballon related Research}, isbn = {9789290922858}, pages = {341 -- 346}, year = {2013}, language = {en} } @inproceedings{DupratDachwaldHilchenbachetal.2013, author = {Duprat, J. and Dachwald, Bernd and Hilchenbach, M. and Engrand, Cecile and Espe, C. and Feldmann, M. and Francke, G. and G{\"o}r{\"o}g, Mark and L{\"u}sing, N. and Langenhorst, Falko}, title = {The MARVIN project: a micrometeorite harvester in Antarctic snow}, series = {44th Lunar and Planetary Science Conference}, booktitle = {44th Lunar and Planetary Science Conference}, year = {2013}, abstract = {MARVIN is an automated drilling and melting probe dedicated to collect pristine interplanetary dust particles (micrometeorites) from central Antarctica snow.}, language = {en} } @incollection{WolffSeefeldtBaueretal.2014, author = {Wolff, Nino and Seefeldt, Patric and Bauer, Wolfgang and Fiebig, Christopher and Gerding, Patrick and Parow-Souchon, Kai and Pongs, Anna and Reiffenrath, Matti and Ziemann, Thomas}, title = {Alternative application of solar sail technology}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, doi = {10.1007/978-3-642-34907-2_23}, pages = {351 -- 365}, year = {2014}, abstract = {The development of Gossamer sail structures for solar sails contributes to a large field of future space applications like thin film solar generators, membrane antennas and drag sails. The focus of this paper is the development of a drag sail based on solar sail technology that could contribute to a reduction of space debris in low Earth orbits. The drag sail design and its connections to solar sail development, a first test on a sounding rocket, as well as the ongoing integration of the drag sail into a triple CubeSat is presented.}, language = {en} } @incollection{DachwaldBoehnhardtBrojetal.2014, author = {Dachwald, Bernd and Boehnhardt, Herrmann and Broj, Ulrich and Geppert, Ulrich R. M. E. and Grundmann, Jan-Thimo and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Johnson, Les and K{\"u}hrt, Ekkehard and Mottola, Stefano and Macdonald, Malcolm and McInnes, Colin R. and Vasile, Massimiliano and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a multiple NEO Rendezvous Mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, pages = {211 -- 226}, year = {2014}, abstract = {A technology reference study for a multiple near-Earth object (NEO) rendezvous mission with solar sailcraft is currently carried out by the authors of this paper. The investigated mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy based on the DLR/ESA Gossamer technology. The main scientific objective of the mission is to explore the diversity of NEOs. After direct interplanetary insertion, the solar sailcraft should—within less than 10 years—rendezvous three NEOs that are not only scientifically interesting, but also from the point of human spaceight and planetary defense. In this paper, the objectives of the study are outlined and a preliminary potential mission profile is presented.}, language = {en} } @incollection{McInnesBothmerDachwaldetal.2014, author = {McInnes, Colin R. and Bothmer, Volker and Dachwald, Bernd and Geppert, Ulrich R. M. E. and Heiligers, Jeannette and Hilgers, Alan and Johnson, Les and Macdonald, Malcolm and Reinhard, Ruedeger and Seboldt, Wolfgang and Spietz, Peter}, title = {Gossamer roadmap technology reference study for a Sub-L1 Space Weather Mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, pages = {227 -- 242}, year = {2014}, abstract = {A technology reference study for a displaced Lagrange point space weather mission is presented. The mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy to deliver a low mass platform and payload which can be accommodated on the DLR/ESA Gossamer-3 technology demonstration mission. A direct escape from Geostationary Transfer Orbit is assumed with the sail deployed after the escape burn. The use of a miniaturized, low mass platform and payload then allows the Gossamer-3 solar sail to potentially double the warning time of space weather events. The mission profile and mass budgets will be presented to achieve these ambitious goals.}, language = {en} } @incollection{MacdonaldMcGrathAppourchauxetal.2014, author = {Macdonald, Malcolm and McGrath, C. and Appourchaux, T. and Dachwald, Bernd and Finsterle, W. and Gizon, L. and Liewer, P. C. and McInnes, Colin R. and Mengali, G. and Seboldt, W. and Sekii, T. and Solanki, S. K. and Velli, M. and Wimmer-Schweingruber, R. F. and Spietz, Peter and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a solar polar mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, editor = {Macdonald, Malcolm}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-642-34906-5}, doi = {10.1007/978-3-642-34907-2_17}, pages = {243 -- 257}, year = {2014}, abstract = {A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100-125 m to deliver a 'sufficient value' minimum science payload, and that a 2.5 μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass.}, language = {en} } @article{FunkeDickhoffKeinzetal.2014, author = {Funke, Harald and Dickhoff, J. and Keinz, Jan and Anis, H. A. and Parente, A. and Hendrick, P.}, title = {Experimental and numerical study of the micromix combustion principle applied for hydrogen and hydrogen-rich syngas as fuel with increased energy density for industrial gas turbine applications}, series = {Energy procedia}, journal = {Energy procedia}, number = {61}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102 (E-Journal)}, doi = {10.1016/j.egypro.2014.12.201}, pages = {1736 -- 1739}, year = {2014}, abstract = {The Dry Low NOx (DLN) Micromix combustion principle with increased energy density is adapted for the industrial gas turbine APU GTCP 36-300 using hydrogen and hydrogen-rich syngas with a composition of 90\%-Vol. hydrogen (H₂) and 10\%-Vol. carbon-monoxide (CO). Experimental and numerical studies of several combustor geometries for hydrogen and syngas show the successful advance of the DLN Micromix combustion from pure hydrogen to hydrogen-rich syngas. The impact of the different fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using a hybrid Eddy Break Up combustion model and validated against experimental results.}, language = {en} } @article{SchirraWatmuffBauschat2014, author = {Schirra, Julian and Watmuff, Jonathan and Bauschat, J.-Michael}, title = {Highly non-planar lifting systems: a relative assessment of existing potential-methodologies to accurately estimate the induced drag}, series = {32nd AIAA Applied Aerodynamics Conference 2014 : June, 16-20 2014, Atlanta, Ga.}, journal = {32nd AIAA Applied Aerodynamics Conference 2014 : June, 16-20 2014, Atlanta, Ga.}, organization = {American Institute of Aeronautics and Astronautics}, isbn = {978-1-62410-288-2}, doi = {10.2514/6.2014-2988}, pages = {Publ. online}, year = {2014}, language = {en} } @inproceedings{NiedermeierClemensKowalskietal.2014, author = {Niedermeier, H. and Clemens, J. and Kowalski, Julia and Macht, S. and Heinen, D. and Hoffmann, R. and Linder, Peter}, title = {Navigation system for a research ice probe for antarctic glaciers}, series = {IEEE/ION Position, Location and Navigation Symposium (PLANS) ; 5-8 May 2014, Monterey, Calif.}, booktitle = {IEEE/ION Position, Location and Navigation Symposium (PLANS) ; 5-8 May 2014, Monterey, Calif.}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {Position, Location and Navigation Symposium <2014, Monterey, Calif.>}, isbn = {978-1-4799-3319-8}, pages = {959 -- 975}, year = {2014}, language = {en} } @article{StadlerGarveyEmbsetal.2014, author = {Stadler, Alexander Maximilian and Garvey, Christopher J. and Embs, Jan Peter and Koza, Michael Marek and Unruh, Tobias and Artmann, Gerhard and Zaccai, Guiseppe}, title = {Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study}, series = {Biochimica et biophysica acta (BBA): General Subjects}, volume = {1840}, journal = {Biochimica et biophysica acta (BBA): General Subjects}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-8006 (E-Journal); 0304-4165 (Print)}, doi = {10.1016/j.bbagen.2014.06.007}, pages = {2989 -- 2999}, year = {2014}, language = {en} } @inproceedings{SchirraWatmuffBauschat2014, author = {Schirra, Julian and Watmuff, Jon and Bauschat, J.-Michael}, title = {A relative assessment of existing potential-methodologies to accurately estimate the induced drag of highly non-planar lifting systems}, series = {Advanced aero concepts, design and operations : Applied Aerodynamics Conference : July 22 -24, 2014, Bristol, UK}, booktitle = {Advanced aero concepts, design and operations : Applied Aerodynamics Conference : July 22 -24, 2014, Bristol, UK}, organization = {Applied Aerodynamics Conference <2014, Bristol>}, pages = {1 -- 13}, year = {2014}, language = {en} } @inproceedings{FunkeHajAyedKustereretal.2014, author = {Funke, Harald and Haj Ayed, A. and Kusterer, K. and Keinz, Jan and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle}, series = {Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : D{\"u}sseldorf, Germany, June 16-20, 2014 ; Vol. 4A)}, booktitle = {Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : D{\"u}sseldorf, Germany, June 16-20, 2014 ; Vol. 4A)}, publisher = {ASME}, address = {New York, N.Y.}, isbn = {978-0-7918-4568-4}, pages = {V04AT04A057}, year = {2014}, language = {en} } @article{DachwaldMikuckiTulaczyketal.2014, author = {Dachwald, Bernd and Mikucki, Jill and Tulaczyk, Slawek and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Kowalski, Julia and Xu, Changsheng}, title = {IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems}, series = {Annals of Glaciology}, volume = {55}, journal = {Annals of Glaciology}, number = {65}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1727-5644}, doi = {10.3189/2014AoG65A004}, pages = {14 -- 22}, year = {2014}, abstract = {There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample.}, language = {en} } @inproceedings{SchirraBauschatWatmuff2014, author = {Schirra, Julian and Bauschat, J.-Michael and Watmuff, J.H.}, title = {Accurate induced drag prediction for highly non-planar lifting systems}, series = {19th Australasian Fluid Mechanics Conference : 8.-11. Dezember 2014, Melbourne, Australia}, booktitle = {19th Australasian Fluid Mechanics Conference : 8.-11. Dezember 2014, Melbourne, Australia}, pages = {4 Seiten}, year = {2014}, abstract = {The impact of wake model effects is investigated for two highly non-planar lifting systems. Dependent on the geometrical arrangement of the configuration, the wake model shape is found to considerably affect the estimation. Particularly at higher angles of attack, an accurate estimation based on the common linear wake model approaches is involved.}, language = {en} } @misc{EickmannEschFunkeetal.2014, author = {Eickmann, Matthias and Esch, Thomas and Funke, Harald and Abanteriba, Sylvester and Roosen, Petra}, title = {Biofuels in Aviation - Safety Implications of Bio-Ethanol Usage in General Aviation Aircraft}, year = {2014}, abstract = {Up in the clouds and above fuels and construction materials must be very carefully selected to ensure a smooth flight and touchdown. Out of around 38,000 single and dual-engined propeller aeroplanes, roughly a third are affected by a new trend in the fuel sector that may lead to operating troubles or even emergency landings: The admixture of bio-ethanol to conventional gasoline. Experiences with these fuels may be projected to alternative mixtures containing new components.}, language = {en} } @article{KonstantinidisFloresMartinezDachwaldetal.2015, author = {Konstantinidis, Konstantinos and Flores Martinez, Claudio and Dachwald, Bernd and Ohndorf, Andreas and Dykta, Paul and Bowitz, Pascal and Rudolph, Martin and Digel, Ilya and Kowalski, Julia and Voigt, Konstantin and F{\"o}rstner, Roger}, title = {A lander mission to probe subglacial water on Saturn's moon enceladus for life}, series = {Acta astronautica}, volume = {Vol. 106}, journal = {Acta astronautica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2030 (E-Journal); 0094-5765 (Print)}, pages = {63 -- 89}, year = {2015}, language = {en} } @article{SeifarthGossmannGrosseetal.2015, author = {Seifarth, Volker and Goßmann, Matthias and Grosse, J. O. and Becker, C. and Heschel, I. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds}, series = {Urologia Internationalis}, volume = {2015}, journal = {Urologia Internationalis}, number = {95}, publisher = {Karger}, address = {Basel}, issn = {0042-1138}, doi = {10.1159/000368419}, pages = {106 -- 113}, year = {2015}, language = {en} } @inproceedings{BagheriSchleupenDahmannetal.2015, author = {Bagheri, Mohsen and Schleupen, Josef and Dahmann, Peter and Kallweit, Stephan}, title = {A multi-functional device applying for the safe maintenance at high-altitude on wind turbines}, series = {20th International Conference on Composite Materials : Copenhagen, 19 - 24th July 2015}, booktitle = {20th International Conference on Composite Materials : Copenhagen, 19 - 24th July 2015}, organization = {International Conference on Composite Materials <20, 2015, Copenhagen>}, pages = {1 -- 6}, year = {2015}, language = {en} } @incollection{BusseEschMuntaniol2015, author = {Busse, Daniel and Esch, Thomas and Muntaniol, Roman}, title = {Thermal management in E-carsharing vehicles - preconditioning concepts of passenger compartments}, series = {E-Mobility in Europe : trends and good practice}, booktitle = {E-Mobility in Europe : trends and good practice}, publisher = {Springer}, address = {Cham [u.a.]}, isbn = {978-3-319-13193-1}, doi = {10.1007/978-3-319-13194-8_18}, pages = {327 -- 343}, year = {2015}, abstract = {The issue of thermal management in electric vehicles includes the topics of drivetrain cooling and heating, interior temperature, vehicle body conditioning and safety. In addition to the need to ensure optimal thermal operating conditions of the drivetrain components (drive motor, battery and electrical components), thermal comfort must be provided for the passengers. Thermal comfort is defined as the feeling which expresses the satisfaction of the passengers with the ambient conditions in the compartment. The influencing factors on thermal comfort are the temperature and humidity as well as the speed of the indoor air and the clothing and the activity of the passengers, in addition to the thermal radiation and the temperatures of the interior surfaces. The generation and the maintenance of free visibility (ice- and moisture-free windows) count just as important as on-demand heating and cooling of the entire vehicle. A Carsharing climate concept of the innovative ec2go vehicle stipulates and allows for only seating areas used by passengers to be thermally conditioned in a close-to-body manner. To enable this, a particular feature has been added to the preconditioning of the Carsharing electric vehicle during the electric charging phase at the parking station.}, language = {en} } @inproceedings{FunkeKeinzKustereretal.2015, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Experimental and Numerical Study on Optimizing the DLN Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Montreal, Quebec, Canada, June 15-19, 2015}, booktitle = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Montreal, Quebec, Canada, June 15-19, 2015}, isbn = {978-0-7918-5668-0}, doi = {10.1115/GT2015-42043}, pages = {V04AT04A008}, year = {2015}, language = {en} } @article{HajAyedKustererFunkeetal.2015, author = {Haj Ayed, A. and Kusterer, K. and Funke, Harald and Keinz, Jan and Striegan, Constantin and Bohn, D.}, title = {Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine}, series = {Propulsion and power research}, volume = {Vol. 4}, journal = {Propulsion and power research}, number = {Iss. 3}, issn = {2212-540X}, doi = {10.1016/j.jppr.2015.07.005}, pages = {123 -- 131}, year = {2015}, language = {en} } @article{HajAyedKustererFunkeetal.2015, author = {Haj Ayed, A. and Kusterer, K. and Funke, Harald and Keinz, Jan and Striegan, Constantin and Bohn, D.}, title = {Improvement study for the dry-low-NOx hydrogen micromix combustion technology}, series = {Propulsion and power research}, volume = {Vol. 4}, journal = {Propulsion and power research}, number = {Iss. 3}, issn = {2212-540X}, doi = {10.1016/j.jppr.2015.07.003}, pages = {132 -- 140}, year = {2015}, language = {en} } @inproceedings{NeuJanserKhatibietal.2015, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Operational modal analysis of a cantilever in a wind tunnel using optical fiber bragg grating sensors}, series = {6th International Operational Modal Analysis Conference. IOMAC´15. 2015 May 12-14 Gijon - Spain}, booktitle = {6th International Operational Modal Analysis Conference. IOMAC´15. 2015 May 12-14 Gijon - Spain}, doi = {10.13140/RG.2.1.3753.0324}, pages = {10 S.}, year = {2015}, language = {en} } @article{GrundmannDachwaldGrimmetal.2015, author = {Grundmann, Jan Thimo and Dachwald, Bernd and Grimm, Christian D. and Kahle, Ralph and Koch, Aaron Dexter and Krause, Christian and Lange, Caroline and Quantius, Dominik and Ulamec, Stephan}, title = {Spacecraft for Hypervelocity Impact Research - An Overview of Capabilities, Constraints and the Challenges of Getting There}, series = {Procedia Engineering}, volume = {Vol. 103}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.04.021}, pages = {151 -- 158}, year = {2015}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2015, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Cordero, Frederico and Dachwald, Bernd and Koncz, Alexander and Krause, Christian and Mikschl, Tobias and Montenegro, Sergio and Quantius, Dominik and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seefeldt, Patric and T{\´o}th, Norbert and Wejmo, Elisabet}, title = {From Sail to Soil - Getting Sailcraft Out of the Harbour on a Visit to One of Earth's Nearest Neighbours}, series = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {20 S.}, year = {2015}, language = {en} } @inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and Orbital Dynamics Modeling for an Uncontrolled Solar-Sail Experiment in Low-Earth Orbit}, series = {25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany}, booktitle = {25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany}, pages = {15 S.}, year = {2015}, language = {en} } @incollection{DigelSadykovTemizArtmannetal.2015, author = {Digel, Ilya and Sadykov, R. and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Changes in intestinal microflora in rats induced by oral exposure to low lead (II) concentrations}, series = {Lead Exposure and Poisoning: Clinical Symptoms, Medical Management and Preventive Strategies}, booktitle = {Lead Exposure and Poisoning: Clinical Symptoms, Medical Management and Preventive Strategies}, publisher = {Nova Science Publ.}, isbn = {9781634826990}, pages = {75 -- 99}, year = {2015}, language = {en} } @inproceedings{HorikawaKazariOkadaetal.2015, author = {Horikawa, Atsushi and Kazari, Masahide and Okada, Kunio and Funke, Harald and Keinz, Jan and Kusterer, Karsten and Haji Ayed, Anis}, title = {Developments of Hydrogen Dry Low Emission Combustion Technology}, series = {Annual Congress of Gas Turbine Society Japan, 2015}, booktitle = {Annual Congress of Gas Turbine Society Japan, 2015}, pages = {5 S.}, year = {2015}, language = {en} } @inproceedings{HorikawaOkadaKazarietal.2015, author = {Horikawa, Atsushi and Okada, Kunio and Kazari, Masahide and Funke, Harald and Keinz, Jan and Kusterer, Karsten and Haj Ayed, Anis}, title = {Application of Low NOx Micro-Mix Hydrogen Combustion to Industrial Gas Turbine Combustor and Conceptual Design}, series = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, isbn = {978-4-89111-008-6}, pages = {141 -- 146}, year = {2015}, language = {en} } @inproceedings{FunkeKeinzHajAyedetal.2015, author = {Funke, Harald and Keinz, Jan and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Development and Testing of a Low NOx Micromix Combustion Chamber for an Industrial Gas Turbine}, series = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, isbn = {978-4-89111-008-6}, pages = {131 -- 140}, year = {2015}, language = {en} } @inproceedings{RoosenFeyerl2015, author = {Roosen, Petra and Feyerl, G{\"u}nter}, title = {Gender-specific perception and utilization of personal use vehicles}, series = {FISITA World Automotive Congress 2014 : Maastricht, The Netherlands, 2 - 6 June / [organised by the International Federation of Automotive Engineering Societies (FISITA) ...]. Bd. 1}, booktitle = {FISITA World Automotive Congress 2014 : Maastricht, The Netherlands, 2 - 6 June / [organised by the International Federation of Automotive Engineering Societies (FISITA) ...]. Bd. 1}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-5108-0209-4}, pages = {418 -- 425}, year = {2015}, language = {en} } @inproceedings{PeloniCeriottiDachwald2015, author = {Peloni, A. and Ceriotti, M. and Dachwald, Bernd}, title = {Preliminary trajectory design of a multiple NEO rendezvous mission through solar sailing}, series = {Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014}, booktitle = {Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-63439-986-9}, pages = {5352 -- 5366}, year = {2015}, language = {en} } @inproceedings{KonstantinidisKowalskiMartinezetal.2015, author = {Konstantinidis, K. and Kowalski, Julia and Martinez, C. F. and Dachwald, Bernd and Ewerhart, D. and F{\"o}rstner, R.}, title = {Some necessary technologies for in-situ astrobiology on enceladus}, series = {Proceedings of the International Astronautical Congress}, booktitle = {Proceedings of the International Astronautical Congress}, isbn = {978-151081893-4}, pages = {1354 -- 1372}, year = {2015}, language = {en} } @inproceedings{WeberEnglhardHaileretal.2015, author = {Weber, Tobias and Englhard, Markus and Hailer, Benjamin and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling}, series = {Proceedings of SAMPE Europe Conference, Amiens , France}, booktitle = {Proceedings of SAMPE Europe Conference, Amiens , France}, pages = {1 -- 10}, year = {2015}, language = {en} } @inproceedings{Weber2015, author = {Weber, Tobias}, title = {Manufacturing Process Simulation for Tooling Optimization: Reduction of Quality Issues During Autoclave Manufacturing of Composite Parts}, series = {Proceedings of SAMPE Europe Conference 2015, Amiens, France}, booktitle = {Proceedings of SAMPE Europe Conference 2015, Amiens, France}, pages = {1 -- 8}, year = {2015}, language = {en} } @inproceedings{OttenSchmidWeber2015, author = {Otten, D. and Schmid, M. and Weber, Tobias}, title = {Advances In Sheet Metal-Forming: Reduction Of Tooling Cost By Methodical Optimization}, series = {Proceedings of SAMPE Europe Conference, Amiens , France}, booktitle = {Proceedings of SAMPE Europe Conference, Amiens , France}, year = {2015}, language = {en} } @inproceedings{GrundmannLangeDachwaldetal.2015, author = {Grundmann, Jan Thimo and Lange, Caroline and Dachwald, Bernd and Grimm, Christian and Koch, Aaron and Ulamec, Stephan}, title = {Small Spacecraft in Planetary Defence Related Applications-Capabilities, Constraints, Challenges}, series = {IEEE Aerospace Conference}, booktitle = {IEEE Aerospace Conference}, pages = {1 -- 18}, year = {2015}, abstract = {In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA's ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos.}, language = {en} } @inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit}, series = {25th International Symposium on Space Flight Dynamics ISSFD}, booktitle = {25th International Symposium on Space Flight Dynamics ISSFD}, pages = {1 -- 15}, year = {2015}, abstract = {Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail}, language = {en} } @inproceedings{SeefeldtBauerDachwaldetal.2015, author = {Seefeldt, Patric and Bauer, Waldemar and Dachwald, Bernd and Grundmann, Jan Thimo and Straubel, Marco and Sznajder, Maciej and T{\´o}th, Norbert and Zander, Martin E.}, title = {Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power}, series = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {24}, year = {2015}, language = {en} } @article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Braun, Carsten and Orifici, Adrian C.}, title = {Operational Modal Analysis of a wing excited by transonic flow}, series = {Aerospace Science and Technology}, volume = {49}, journal = {Aerospace Science and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1270-9638}, doi = {10.1016/j.ast.2015.11.032}, pages = {73 -- 79}, year = {2016}, abstract = {Operational Modal Analysis (OMA) is a promising candidate for flutter testing and Structural Health Monitoring (SHM) of aircraft wings that are passively excited by wind loads. However, no studies have been published where OMA is tested in transonic flows, which is the dominant condition for large civil aircraft and is characterized by complex and unique aerodynamic phenomena. We use data from the HIRENASD large-scale wind tunnel experiment to automatically extract modal parameters from an ambiently excited wing operated in the transonic regime using two OMA methods: Stochastic Subspace Identification (SSI) and Frequency Domain Decomposition (FDD). The system response is evaluated based on accelerometer measurements. The excitation is investigated from surface pressure measurements. The forcing function is shown to be non-white, non-stationary and contaminated by narrow-banded transonic disturbances. All these properties violate fundamental OMA assumptions about the forcing function. Despite this, all physical modes in the investigated frequency range were successfully identified, and in addition transonic pressure waves were identified as physical modes as well. The SSI method showed superior identification capabilities for the investigated case. The investigation shows that complex transonic flows can interfere with OMA. This can make existing approaches for modal tracking unsuitable for their application to aircraft wings operated in the transonic flight regime. Approaches to separate the true physical modes from the transonic disturbances are discussed.}, language = {en} } @inproceedings{FunkeKeinzBoerneretal.2016, author = {Funke, Harald and Keinz, Jan and B{\"o}rner, S. and Hendrick, P. and Elsing, R.}, title = {Testing and analysis of the impact on engine cycle parameters and control system modifications using hydrogen or methane as fuel in an industrial gas turbine}, series = {Progress in propulsion physics ; Volume 8}, booktitle = {Progress in propulsion physics ; Volume 8}, publisher = {EDP Sciences}, address = {o.O.}, organization = {European Conference for Aerospace Sciences <2013, M{\"u}nchen>}, isbn = {978-5-94588-191-4}, doi = {10.1051/eucass/201608409}, pages = {409 -- 426}, year = {2016}, language = {en} } @article{FunkeKeinzKustereretal.2016, author = {Funke, Harald and Keinz, Jan and Kusterer, Karsten and Ayed, Anis Haj and Kazari, Masahide and Kitajima, Junichi and Horikawa, Atsushi and Okada, Kunio}, title = {Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {9}, journal = {Journal of Thermal Science and Engineering Applications}, number = {2}, publisher = {ASME}, address = {New York, NY}, issn = {1948-5093}, doi = {10.1115/1.4034849}, pages = {021001 -- 021001-10}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation.}, language = {en} } @article{AyedKustererFunkeetal.2016, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan}, title = {CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities}, series = {American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)}, volume = {26}, journal = {American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)}, number = {3}, publisher = {GSSRR}, issn = {2313-4402}, pages = {290 -- 303}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of Hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. Thus, the development of DLN combustion technologies is an essential and challenging task for the future of Hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel has been developed to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flash-back and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. The Micromix Combustion technology has been already proven experimentally and numerically for pure Hydrogen fuel operation at different energy density levels. The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NOx emission and to identify the most relevant design parameters, aiming to provide a physical understanding of the Micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application. The study reveals great optimization potential of the Micromix Combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the Micromix burners and to integrate this technology in industrial gas turbines.}, language = {en} } @article{FunkeBeckmannKeinzetal.2016, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-NOx-Micromix-Combustion}, series = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4975-0}, doi = {10.1115/GT2016-56430}, pages = {12}, year = {2016}, abstract = {The Dry-Low-NOₓ (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOₓ emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOₓ emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H₂-CO) numerical analyses based on a skeletal H₂/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model.}, language = {en} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Automated modal parameter-based anomaly detection under varying wind excitation}, series = {Structural Health Monitoring}, volume = {15}, journal = {Structural Health Monitoring}, number = {6}, publisher = {Sage}, address = {London}, issn = {1475-9217}, doi = {10.1177/1475921716665803}, pages = {1 -- 20}, year = {2016}, abstract = {Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions.}, language = {en} } @inproceedings{WuKemper2016, author = {Wu, Ziyi and Kemper, Hans}, title = {The optimal 48 V - battery pack for a specific load profile of a heavy duty vehicle}, series = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, booktitle = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, year = {2016}, language = {en} } @inproceedings{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {In-flight vibration-based structural health monitoring of aircraft wings}, series = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, booktitle = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, pages = {10 Seiten}, year = {2016}, abstract = {This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes.}, language = {en} } @inproceedings{BarnatBosse2016, author = {Barnat, Miriam and Bosse, Elke}, title = {The challenge of creating meta-inferences: Combining data representing institutional and individual perspectives on first-year support in higher education}, series = {9th Conference on Social Science Methodology of the International Sociological Association, Leicester, UK}, booktitle = {9th Conference on Social Science Methodology of the International Sociological Association, Leicester, UK}, pages = {1 -- 20}, year = {2016}, language = {en} } @inproceedings{KleineKallweitMichauxetal.2016, author = {Kleine, Harald and Kallweit, Stephan and Michaux, Frank and Havermann, Marc and Olivier, Herbert}, title = {PIV Measurement of Shock Wave Diffraction}, series = {18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon}, booktitle = {18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon}, pages = {1 -- 14}, year = {2016}, language = {en} } @inproceedings{SchleupenEngemannBagherietal.2016, author = {Schleupen, Josef and Engemann, Heiko and Bagheri, Mohsen and Kallweit, Stephan}, title = {The potential of SMART climbing robot combined with a weatherproof cabin for rotor blade maintenance}, series = {17th European Conference on Composite Materials - ECCM, Munich, Germany}, booktitle = {17th European Conference on Composite Materials - ECCM, Munich, Germany}, pages = {1 -- 8}, year = {2016}, language = {en} } @inproceedings{Finger2016, author = {Finger, Felix}, title = {Comparative Performance and Benefit Assessment of VTOL and CTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, booktitle = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, pages = {10 Seiten}, year = {2016}, language = {en} } @phdthesis{Frotscher2016, author = {Frotscher, Ralf}, title = {Electromechanical modeling and simulation of thin cardiac tissue constructs - smoothed FEM applied to a biomechanical plate problem}, year = {2016}, language = {en} } @article{WeberArentMuenchetal.2016, author = {Weber, Tobias and Arent, Jan-Christoph and M{\"u}nch, Lukas and Duhovic, Miro and Balvers, Johannes M.}, title = {A fast method for the generation of boundary conditions for thermal autoclave simulation}, series = {Composites Part A}, volume = {88}, journal = {Composites Part A}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1359-835X}, doi = {10.1016/j.compositesa.2016.05.036}, pages = {216 -- 225}, year = {2016}, abstract = {Manufacturing process simulation enables the evaluation and improvement of autoclave mold concepts early in the design phase. To achieve a high part quality at low cycle times, the thermal behavior of the autoclave mold can be investigated by means of simulations. Most challenging for such a simulation is the generation of necessary boundary conditions. Heat-up and temperature distribution in an autoclave mold are governed by flow phenomena, tooling material and shape, position within the autoclave, and the chosen autoclave cycle. This paper identifies and summarizes the most important factors influencing mold heat-up and how they can be introduced into a thermal simulation. Thermal measurements are used to quantify the impact of the various parameters. Finally, the gained knowledge is applied to develop a semi-empirical approach for boundary condition estimation that enables a simple and fast thermal simulation of the autoclave curing process with reasonably high accuracy for tooling optimization.}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2016, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft for small solar system body science, planetary defence and applications}, series = {IEEE Aerospace Conference 2016}, booktitle = {IEEE Aerospace Conference 2016}, pages = {1 -- 20}, year = {2016}, abstract = {Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a 'pure' science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA's ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART.}, language = {en} } @inproceedings{HallmannHeideckerSchlottereretal.2016, author = {Hallmann, Marcus and Heidecker, Ansgar and Schlotterer, Markus and Dachwald, Bernd}, title = {GTOC8: results and methods of team 15 DLR}, series = {26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA}, booktitle = {26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA}, year = {2016}, abstract = {This paper describes the results and methods used during the 8th Global Trajectory Optimization Competition (GTOC) of the DLR team. Trajectory optimization is crucial for most of the space missions and usually can be formulated as a global optimization problem. A lot of research has been done to different type of mission problems. The most demanding ones are low thrust transfers with e.g. gravity assist sequences. In that case the optimal control problem is combined with an integer problem. In most of the GTOCs we apply a filtering of the problem based on domain knowledge.}, language = {en} } @inproceedings{HoevelerJanser2016, author = {Hoeveler, Bastian and Janser, Frank}, title = {The aerodynamically optimized design of a fan-in-wing duct}, series = {Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016}, booktitle = {Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016}, isbn = {1-85768-371-4}, pages = {1 -- 10}, year = {2016}, language = {en} } @inproceedings{OttenSchmidtWeber2016, author = {Otten, D. and Schmidt, M. and Weber, Tobias}, title = {Advances in Determination of Material Parameters for Functional Simulations Based on Process Simulations}, series = {SAMPE Europe Conference 16 Liege}, booktitle = {SAMPE Europe Conference 16 Liege}, isbn = {978-1-5108-3800-0}, pages = {570 -- 577}, year = {2016}, language = {en} } @inproceedings{WeberTellisDuhovic2016, author = {Weber, Tobias and Tellis, Jane J. and Duhovic, Miro}, title = {Characterization of tool-part-interaction an interlaminar friction for manufacturing process simulation}, series = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, booktitle = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, isbn = {978-3-00-053387-7}, pages = {1 -- 7}, year = {2016}, language = {en} } @article{PeloniCeriottiDachwald2016, author = {Peloni, Alessandro and Ceriotti, Matteo and Dachwald, Bernd}, title = {Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission}, series = {Journal of Guidance, Control, and Dynamics}, volume = {39}, journal = {Journal of Guidance, Control, and Dynamics}, number = {12}, publisher = {AIAA}, address = {Reston, Va.}, issn = {0731-5090}, doi = {10.2514/1.G000470}, pages = {2712 -- 2724}, year = {2016}, abstract = {The scientific interest for near-Earth asteroids as well as the interest in potentially hazardous asteroids from the perspective of planetary defense led the space community to focus on near-Earth asteroid mission studies. A multiple near-Earth asteroid rendezvous mission with close-up observations of several objects can help to improve the characterization of these asteroids. This work explores the design of a solar-sail spacecraft for such a mission, focusing on the search of possible sequences of encounters and the trajectory optimization. This is done in two sequential steps: a sequence search by means of a simplified trajectory model and a set of heuristic rules based on astrodynamics, and a subsequent optimization phase. A shape-based approach for solar sailing has been developed and is used for the first phase. The effectiveness of the proposed approach is demonstrated through a fully optimized multiple near-Earth asteroid rendezvous mission. The results show that it is possible to visit five near-Earth asteroids within 10 years with near-term solar-sail technology.}, language = {en} } @article{NeuJanserKhatibietal.2017, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Fully Automated Operational Modal Analysis using multi-stage clustering}, series = {Mechanical Systems and Signal Processing}, volume = {Vol. 84, Part A}, journal = {Mechanical Systems and Signal Processing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0888-3270}, doi = {10.1016/j.ymssp.2016.07.031}, pages = {308 -- 323}, year = {2017}, language = {en} } @inproceedings{FunkeBeckmannKeinzetal.2017, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications}, series = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, booktitle = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, publisher = {ASME}, address = {New York}, isbn = {978-0-7918-5085-5}, doi = {10.1115/GT2017-64795}, year = {2017}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The non-premixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 Vol.\%) Micromix combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel Micromix combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas the evaluated dual-fuel Micromix prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs.}, language = {en} } @inproceedings{StrieganHajAyedFunkeetal.2017, author = {Striegan, C. and Haj Ayed, A. and Funke, Harald and Loechle, S. and Kazari, M. and Horikawa, A. and Okada, K. and Koga, K.}, title = {Numerical combustion and heat transfer simulations and validation for a hydrogen fueled "micromix" test combustor in industrial gas turbine applications}, series = {Proceedings of the ASME Turbo Expo}, booktitle = {Proceedings of the ASME Turbo Expo}, number = {Volume Part F130041-4B, 2017}, isbn = {978-079185085-5}, doi = {10.1115/GT2017-64719}, year = {2017}, language = {en} } @inproceedings{GrundmannMessBieleetal.2017, author = {Grundmann, Jan Thimo and Meß, Jan-Gerd and Biele, Jens and Seefeldt, Patric and Dachwald, Bernd and Spietz, Peter and Grimm, Christian D. and Spr{\"o}witz, Tom and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft in small solar system body applications}, series = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, booktitle = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, organization = {IEEE Aerospace Conference}, isbn = {978-1-5090-1613-6}, doi = {10.1109/AERO.2017.7943626}, pages = {1 -- 20}, year = {2017}, language = {en} } @article{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple near-earth asteroid rendezvous mission: Solar-sailing options}, series = {Advances in Space Research}, journal = {Advances in Space Research}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2017.10.017}, year = {2017}, language = {en} } @inproceedings{SchildtBraunMarcocca2017, author = {Schildt, P. and Braun, Carsten and Marcocca, P.}, title = {Flight testing the extra 330LE flying testbed}, series = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, booktitle = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, isbn = {978-151085387-4}, pages = {349 -- 362}, year = {2017}, language = {en} }