@article{ZhenLiangStaatetal.2024, author = {Zhen, Manghao and Liang, Yunpei and Staat, Manfred and Li, Quanqui and Li, Jianbo}, title = {Discontinuous fracture behaviors and constitutive model of sandstone specimens containing non-parallel prefabricated fissures under uniaxial compression}, series = {Theoretical and Applied Fracture Mechanics}, volume = {131}, journal = {Theoretical and Applied Fracture Mechanics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8442}, doi = {10.1016/j.tafmec.2024.104373}, pages = {Artikel 104373}, year = {2024}, abstract = {The deformation and damage laws of non-homogeneous irregular structural planes in rocks are the basis for studying the stability of rock engineering. To investigate the damage characteristics of rock containing non-parallel fissures, uniaxial compression tests and numerical simulations were conducted on sandstone specimens containing three non-parallel fissures inclined at 0°, 45° and 90° in this study. The characteristics of crack initiation and crack evolution of fissures with different inclinations were analyzed. A constitutive model for the discontinuous fractures of fissured sandstone was proposed. The results show that the fracture behaviors of fissured sandstone specimens are discontinuous. The stress-strain curves are non-smooth and can be divided into nonlinear crack closure stage, linear elastic stage, plastic stage and brittle failure stage, of which the plastic stage contains discontinuous stress drops. During the uniaxial compression test, the middle or ends of 0° fissures were the first to crack compared to 45° and 90° fissures. The end with small distance between 0° and 45° fissures cracked first, and the end with large distance cracked later. After the final failure, 0° fissures in all specimens were fractured, while 45° and 90° fissures were not necessarily fractured. Numerical simulation results show that the concentration of compressive stress at the tips of 0°, 45° and 90° fissures, as well as the concentration of tensile stress on both sides, decreased with the increase of the inclination angle. A constitutive model for the discontinuous fractures of fissured sandstone specimens was derived by combining the logistic model and damage mechanic theory. This model can well describe the discontinuous drops of stress and agrees well with the whole processes of the stress-strain curves of the fissured sandstone specimens.}, language = {en} } @article{WegmannHacklStaatetal.2016, author = {Wegmann, Kilian and Hackl, Michael and Staat, Manfred and Mayer, Katharina and M{\"u}ller, Lars-Peter}, title = {Double plate osteosynthesis of proximal ulna fractures: biomechanical and clinical results}, series = {Knee surgery, sports traumatology, arthroscopy}, volume = {Volume 24}, journal = {Knee surgery, sports traumatology, arthroscopy}, number = {Supplement 1}, publisher = {Springer}, address = {Berlin}, issn = {0942-2056}, doi = {10.1007/s00167-016-4079-0}, pages = {58 -- 59}, year = {2016}, abstract = {While plate fixation of proximal ulna fractures might lead to superior clinical results compared to tension band wiring, regular plates represent an established risk factor for wound complications. The olecranon double plates (Medartis, Basel, CH) might decrease complications related to the osteosynthesis because of their low profile and better anatomical fit. This study aimed to evaluate the biomechanical performance and clinical results of the olecranon double plates.}, language = {en} } @article{VuStaat2004, author = {Vu, Duc-Khoi and Staat, Manfred}, title = {An algorithm for shakedown analysis of structure with temperature dependent yield stress}, year = {2004}, abstract = {This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools.}, subject = {Einspielen }, language = {en} } @article{VuStaatTran2007, author = {Vu, Duc Khoi and Staat, Manfred and Tran, Ich Thinh}, title = {Analysis of pressure equipment by application of the primal-dual theory of shakedown}, series = {Communications in Numerical Methods in Engineering. 23 (2007), H. 3}, journal = {Communications in Numerical Methods in Engineering. 23 (2007), H. 3}, isbn = {1069-8299}, pages = {213 -- 225}, year = {2007}, language = {en} } @article{VuStaat2007, author = {Vu, Duc Khoi and Staat, Manfred}, title = {Shakedown analysis of structures made of materials with temperature-dependent yield stress}, series = {International Journal of Solids and Structures. 44 (2007), H. 13}, journal = {International Journal of Solids and Structures. 44 (2007), H. 13}, isbn = {0020-7683}, pages = {4524 -- 4540}, year = {2007}, language = {en} } @article{VantStaatBaroud2008, author = {Vant, Christianne and Staat, Manfred and Baroud, Gamal}, title = {Percutaneous Vertebroplasty: A Review of Two Intraoperative Complications}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {527 -- 539}, year = {2008}, language = {en} } @article{UllrichGrottkeRossaintetal.2010, author = {Ullrich, Sebastian and Grottke, Oliver and Rossaint, Rolf and Staat, Manfred and Deserno, Thomas M. and Kuhlen, Torsten}, title = {Virtual Needle Simulation with Haptics for Regional Anaesthesia}, pages = {1 -- 3}, year = {2010}, language = {en} } @inproceedings{TranStaatKreissig2007, author = {Tran, Thanh Ngoc and Staat, Manfred and Kreißig, R.}, title = {Calculation of load carrying capacity of shell structures with elasto-plastic material by direct methods}, year = {2007}, abstract = {Proceedings of the International Conference on Material Theory and Nonlinear Dynamics. MatDyn. Hanoi, Vietnam, Sept. 24-26, 2007, 8 p. In this paper, a method is introduced to determine the limit load of general shells using the finite element method. The method is based on an upper bound limit and shakedown analysis with elastic-perfectly plastic material model. A non-linear constrained optimisation problem is solved by using Newton's method in conjunction with a penalty method and the Lagrangean dual method. Numerical investigation of a pipe bend subjected to bending moments proves the effectiveness of the algorithm.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{TranStaatKreissig2007, author = {Tran, Thanh Ngoc and Staat, Manfred and Kreißig, R.}, title = {Finite element shakedown and limit reliability analysis of thin shells}, year = {2007}, abstract = {A procedure for the evaluation of the failure probability of elastic-plastic thin shell structures is presented. The procedure involves a deterministic limit and shakedown analysis for each probabilistic iteration which is based on the kinematical approach and the use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the non-linear problems may be efficiently solved by using the First and Second Order Reliabiblity Methods (Form/SORM). This direct approach reduces considerably the necessary knowledge of uncertain technological input data, computing costs and the numerical error. In: Computational plasticity / ed. by Eugenio Onate. Dordrecht: Springer 2007. VII, 265 S. (Computational Methods in Applied Sciences ; 7) (COMPLAS IX. Part 1 . International Center for Numerical Methods in Engineering (CIMNE)). ISBN 978-1-402-06576-7 S. 186-189}, subject = {Finite-Elemente-Methode}, language = {en} } @article{TranStaat2010, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Shakedown analysis of two dimensional structures by an edge-based smoothed finite element method}, pages = {1 -- 7}, year = {2010}, language = {en} } @article{TranStaat2013, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {An Edge-Based Smoothed Finite Element Method for Primal-Dual Shakedown Analysis of Structures Under Uncertainties}, series = {Limit State of Materials and Structures : Direct Methods 2. Saxc{\´e}, G{\´e}ry de (Hrsg.)}, journal = {Limit State of Materials and Structures : Direct Methods 2. Saxc{\´e}, G{\´e}ry de (Hrsg.)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-5424-9}, pages = {89 -- 102}, year = {2013}, language = {en} } @inproceedings{TranStaat2012, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {A primal-dual shakedown analysis of 3D structures using the face-based smoothed finite element method}, series = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, booktitle = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, editor = {Eberhardsteiner, J.}, year = {2012}, language = {en} } @incollection{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Shakedown analysis of Reissner-Mindlin plates using the edge-based smoothed finite element method}, series = {Direct methods for limit states in structures and materials / Dieter Weichert ; Alan Ponter, ed.}, booktitle = {Direct methods for limit states in structures and materials / Dieter Weichert ; Alan Ponter, ed.}, publisher = {Springer}, address = {Dordrecht [u.a.]}, isbn = {978-94-007-6826-0 (Print) 978-94-007-6827-7 (Online)}, doi = {10.1007/978-94-007-6827-7_5}, pages = {101 -- 117}, year = {2014}, abstract = {This paper concerns the development of a primal-dual algorithm for limit and shakedown analysis of Reissner-Mindlin plates made of von Mises material. At each optimization iteration, the lower bound of the shakedown load multiplier is calculated simultaneously with the upper bound using the duality theory. An edge-based smoothed finite element method (ES-FEM) combined with the discrete shear gap (DSG) technique is used to improve the accuracy of the solutions and to avoid the transverse shear locking behaviour. The method not only possesses all inherent features of convergence and accuracy from ES-FEM, but also ensures that the total number of variables in the optimization problem is kept to a minimum compared with the standard finite element formulation. Numerical examples are presented to demonstrate the effectiveness of the present method.}, language = {en} } @inproceedings{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertain multimode failure and limit analysis of shells}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @incollection{TranStaat2015, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertainty multimode failure and shakedown analysis of shells}, series = {Direct methods for limit and shakedown analysis of structures / eds. Paolo Fuschi ...}, booktitle = {Direct methods for limit and shakedown analysis of structures / eds. Paolo Fuschi ...}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12927-3 (print) ; 978-3-319-12928-0 (online)}, doi = {10.1007/978-3-319-12928-0_14}, pages = {279 -- 298}, year = {2015}, abstract = {This paper presents a numerical procedure for reliability analysis of thin plates and shells with respect to plastic collapse or to inadaptation. The procedure involves a deterministic shakedown analysis for each probabilistic iteration, which is based on the upper bound approach and the use of the exact Ilyushin yield surface. Probabilistic shakedown analysis deals with uncertainties originated from the loads, material strength and thickness of the shell. Based on a direct definition of the limit state function, the calculation of the failure probability may be efficiently solved by using the First and Second Order Reliability Methods (FORM and SORM). The problem of reliability of structural systems (series systems) is handled by the application of a special technique which permits to find all the design points corresponding to all the failure modes. Studies show, in this case, that it improves considerably the FORM and SORM results.}, language = {en} } @article{TranPhamVuetal.2009, author = {Tran, Thanh Ngoc and Pham, Phu Tinh and Vu, D. K. and Staat, Manfred}, title = {Reliability Analysis of Inelastic Shell Structures Under Variable Loads}, series = {Limit States of Materials and Structures : Direct Methods / Hrsg. Dieter Weichert; Hrsg. Alan Ponter}, journal = {Limit States of Materials and Structures : Direct Methods / Hrsg. Dieter Weichert; Hrsg. Alan Ponter}, publisher = {Springer Netherland}, address = {Berlin}, isbn = {978-1-4020-9633-4}, pages = {135 -- 156}, year = {2009}, language = {en} } @inproceedings{TranPhamStaat2008, author = {Tran, Thanh Ngoc and Pham, Phu Tinh and Staat, Manfred}, title = {Reliability analysis of shells based on direct plasticity methods}, year = {2008}, abstract = {Abstracts der CD-Rom Proceedings of the 8th World Congress on Computational Mechanics (WCCM8) and 5th Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 30.06. - 04.07.2008 Venedig, Italien. 2 Seiten Zusammenfassung der Autoren mit graph. Darst. und Literaturverzeichnis}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{TranNovacekTolbaetal.2011, author = {Tran, Thanh Ngoc and Novacek, V. and Tolba, R. and Klinge, U. and Turquier, F. and Staat, Manfred}, title = {Experimental and Computational approach to study colorectal anastomosis. ISB2011, Proceedings of the XXIII Congress of the International Society of Biomechanics, Brussels, Belgium, July 3-7, 2011}, year = {2011}, abstract = {Summary: This paper presents a methodology to study and understand the mechanics of stapled anastomotic behaviors by combining empirical experimentation and finite element analysis. Performance of stapled anastomosis is studied in terms of leakage and numerical results which are compared to in vitro experiments performed on fresh porcine tissue. Results suggest that leaks occur between the tissue and staple legs penetrating through the tissue.}, subject = {Anastomose}, language = {en} } @article{TranKreissigVuetal.2008, author = {Tran, Thanh Ngoc and Kreißig, R. and Vu, Duc Khoi and Staat, Manfred}, title = {Upper bound limit and shakedown analysis of shells using the exact Ilyushin yield surface}, series = {Computer \& Structures. 86 (2008)}, journal = {Computer \& Structures. 86 (2008)}, isbn = {0045-7949}, pages = {1683 -- 1695}, year = {2008}, language = {en} } @article{TranKreissigStaat2009, author = {Tran, Thanh Ngoc and Kreißig, R. and Staat, Manfred}, title = {Probabilistic limit and shakedown analysis of thin plates and shells}, series = {Structural safety. 31 (2009), H. 1}, journal = {Structural safety. 31 (2009), H. 1}, publisher = {-}, isbn = {0167-4730}, pages = {1 -- 18}, year = {2009}, language = {en} } @inproceedings{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {Limit and shakedown analysis of structures under random strength}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {510 -- 518}, year = {2022}, abstract = {Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables.}, language = {en} } @article{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {FEM shakedown analysis of structures under random strength with chance constrained programming}, series = {Vietnam Journal of Mechanics}, volume = {44}, journal = {Vietnam Journal of Mechanics}, number = {4}, publisher = {Vietnam Academy of Science and Technology (VAST)}, issn = {0866-7136}, doi = {10.15625/0866-7136/17943}, pages = {459 -- 473}, year = {2022}, abstract = {Direct methods, comprising limit and shakedown analysis, are a branch of computational mechanics. They play a significant role in mechanical and civil engineering design. The concept of direct methods aims to determine the ultimate load carrying capacity of structures beyond the elastic range. In practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and constraints. If strength and loading are random quantities, the shakedown analysis can be formulated as stochastic programming problem. In this paper, a method called chance constrained programming is presented, which is an effective method of stochastic programming to solve shakedown analysis problems under random conditions of strength. In this study, the loading is deterministic, and the strength is a normally or lognormally distributed variable.}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {FEM Shakedown of uncertain structures by chance constrained programming}, series = {PAMM Proceedings in Applied Mathematics and Mechanics}, volume = {16}, booktitle = {PAMM Proceedings in Applied Mathematics and Mechanics}, number = {1}, issn = {1617-7061}, doi = {10.1002/pamm.201610346}, pages = {715 -- 716}, year = {2016}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, H. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown analysis of plate bending analysis under stochastic uncertainty by chance constrained programming}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} } @inproceedings{TranStaatStavroulakis2014, author = {Tran, Ngoc Trinh and Staat, Manfred and Stavroulakis, G. E.}, title = {A multicriteria method for truss optimization}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @article{TranStaat2020, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under lognormally distributed strength by chance constrained programming}, series = {Optimization and Engineering}, volume = {21}, journal = {Optimization and Engineering}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-2924}, doi = {10.1007/s11081-019-09437-2}, pages = {131 -- 157}, year = {2020}, abstract = {We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.}, language = {en} } @article{TranStaat2021, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under random strength and random load by chance constrained programming}, series = {European Journal of Mechanics - A/Solids}, volume = {85}, journal = {European Journal of Mechanics - A/Solids}, number = {Article 104106}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0997-7538}, doi = {10.1016/j.euromechsol.2020.104106}, year = {2021}, language = {en} } @inproceedings{TranStaat2021, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength}, series = {Proceedings of UNCECOMP 2021}, booktitle = {Proceedings of UNCECOMP 2021}, isbn = {978-618-85072-6-5}, doi = {10.7712/120221.8041.19047}, pages = {323 -- 338}, year = {2021}, abstract = {A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm.}, language = {en} } @inproceedings{TranMatthiesStavroulakisetal.2018, author = {Tran, Ngoc Trinh and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {Direct plastic structural design by chance constrained programming}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {12 Seiten}, year = {2018}, abstract = {We propose a stochastic programming method to analyse limit and shakedown of structures under random strength with lognormal distribution. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements is used.}, language = {en} } @incollection{TranTranMatthiesetal.2017, author = {Tran, N. T. and Tran, Thanh Ngoc and Matthies, M. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown Analysis Under Stochastic Uncertainty by Chance Constrained Programming}, series = {Advances in Direct Methods for Materials and Structures}, booktitle = {Advances in Direct Methods for Materials and Structures}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-59810-9}, doi = {10.1007/978-3-319-59810-9_6}, pages = {85 -- 103}, year = {2017}, abstract = {In this paper we propose a stochastic programming method to analyse limit and shakedown of structures under uncertainty condition of strength. Based on the duality theory, the shakedown load multiplier formulated by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier formulated by static theorem. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) with three-node linear triangular elements is used for structural analysis.}, language = {en} } @article{TopcuMadabhushiStaat2022, author = {Top{\c{c}}u, Murat and Madabhushi, Gopal S.P. and Staat, Manfred}, title = {A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius}, series = {International Journal of Solids and Structures}, volume = {239-240}, journal = {International Journal of Solids and Structures}, number = {Art. No. 111464}, publisher = {Elsevier}, address = {New York, NY}, issn = {0020-7683}, doi = {10.1016/j.ijsolstr.2022.111464}, year = {2022}, abstract = {A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP.}, language = {en} } @misc{TopcuMadabhushiStaat2022, author = {Topcu, Murat and Madabhushi, Gopal Santana Phani and Staat, Manfred}, title = {Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster}, doi = {10.6084/m9.figshare.19333295.v2}, year = {2022}, abstract = {Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster for an elastic stress transfer between matrix and fibres having a variable radius.}, language = {en} } @article{StaatVu2006, author = {Staat, Manfred and Vu, Khoi Duc}, title = {Limit loads of circumferentially flawed pipes and cylindrical vessels under internal pressure}, series = {International Journal of Pressure Vessels and Piping. 83 (2006), H. 3}, journal = {International Journal of Pressure Vessels and Piping. 83 (2006), H. 3}, isbn = {0308-0161}, pages = {188 -- 196}, year = {2006}, language = {en} } @article{StaatVu2004, author = {Staat, Manfred and Vu, Duc-Khoi}, title = {An Algorithm for Shakedown Analysis for Materials with Temperature Dependent Yield Stress}, series = {Proceedings in Applied Mathematics and Mechanics (PAMM). 4 (2004), H. 1}, journal = {Proceedings in Applied Mathematics and Mechanics (PAMM). 4 (2004), H. 1}, isbn = {1617-7061}, pages = {231 -- 233}, year = {2004}, language = {en} } @article{StaatVu2007, author = {Staat, Manfred and Vu, Duc-Khoi}, title = {Limit analysis of flaws in pressurized pipes and cylindrical vessels. Part I: Axial defects}, series = {Engineering Fracture Mechanics. 74 (2007), H. 3}, journal = {Engineering Fracture Mechanics. 74 (2007), H. 3}, isbn = {0013-7944}, pages = {431 -- 450}, year = {2007}, language = {en} } @article{StaatVu2012, author = {Staat, Manfred and Vu, Duc Khoi}, title = {Limit analysis of flaws in pressurized pipes and cylindrical vessels Part II: Circumferential defects}, series = {Engineering Fracture Mechanics ; 97(2013), H. 1}, volume = {97}, journal = {Engineering Fracture Mechanics ; 97(2013), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-7944}, doi = {10.1016/j.engfracmech.2012.05.017}, pages = {314 -- 333}, year = {2012}, abstract = {Upper and lower bound theorems of limit analyses have been presented in part I of the paper. Part II starts with the finite element discretization of these theorems and demonstrates how both can be combined in a primal-dual optimization problem. This recently proposed numerical method is used to guide the development of a new class of closed-form limit loads for circumferential defects, which show that only large defects contribute to plastic collapse with a rapid loss of strength with increasing crack sizes. The formulae are compared with primal-dual FEM limit analyses and with burst tests. Even closer predictions are obtained with iterative limit load solutions for the von Mises yield function and for the Tresca yield function. Pressure loading of the faces of interior cracks in thick pipes reduces the collapse load of circumferential defects more than for axial flaws. Axial defects have been treated in part I of the paper.}, language = {en} } @article{StaatTrenzLohmannetal.2012, author = {Staat, Manfred and Trenz, Eva and Lohmann, Philipp and Frotscher, Ralf and Klinge, Uwe and Tabaza, Ruth and Kirschner-Hermanns, Ruth}, title = {New measurements to compare soft tissue anchoring systems in pelvic floor surgery}, series = {Journal of Biomedical Materials Research Part B: Applied Biomaterials}, volume = {100B}, journal = {Journal of Biomedical Materials Research Part B: Applied Biomaterials}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1552-4981}, doi = {10.1002/jbm.b.32654}, pages = {924 -- 933}, year = {2012}, abstract = {Suburethral slings as well as different meshes are widely used treating stress urinary incontinence and prolaps in women. With the development of MiniSlings and special meshes using less alloplastic material anchorage systems become more important to keep devices in place and to put some tension especially on the MiniSlings. To date, there are many different systems of MiniSlings of different companies on the market which differ in the structure of the used meshes and anchors. A new objective measurement method to compare different properties of MiniSling systems (mesh and anchor) is presented in this article. Ballistic gelatine acts as soft tissue surrogate. Significant differences in parameters like pull-out strength of anchors or shrinkage of meshes under loading conditions have been determined. The form and size of the anchors as well as the structural stability of the meshes are decisive for a proper integration. The tested anchorings sytems showed markedly different mechanical function at their respective load bearing capacity. As the stable fixation of the device in tissue is a prerequisite for a permanet reinforcement, the proposed test system permits further optimisation of anchor and mesh devices to improve the success of the surgical treatment}, language = {en} } @inproceedings{StaatTranPham2008, author = {Staat, Manfred and Tran, Thanh Ngoc and Pham, Phu Tinh}, title = {Limit and shakedown reliability analysis by nonlinear programming}, year = {2008}, abstract = {7th International Conference on Reliability of Materials and Structures (RELMAS 2008). June 17 - 20, 2008 ; Saint Petersburg, Russia. pp 354-358. Reprint with corrections in red Introduction Analysis of advanced structures working under extreme heavy loading such as nuclear power plants and piping system should take into account the randomness of loading, geometrical and material parameters. The existing reliability are restricted mostly to the elastic working regime, e.g. allowable local stresses. Development of the limit and shakedown reliability-based analysis and design methods, exploiting potential of the shakedown working regime, is highly needed. In this paper the application of a new algorithm of probabilistic limit and shakedown analysis for shell structures is presented, in which the loading and strength of the material as well as the thickness of the shell are considered as random variables. The reliability analysis problems may be efficiently solved by using a system combining the available FE codes, a deterministic limit and shakedown analysis, and the First and Second Order Reliability Methods (FORM/SORM). Non-linear sensitivity analyses are obtained directly from the solution of the deterministic problem without extra computational costs.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{StaatTranKreissig2008, author = {Staat, Manfred and Tran, Thanh Ngoc and Kreißig, R.}, title = {Load bearing capacity of thin shell structures made of elastoplastic material by direct methods}, series = {Technische Mechanik. 28 (2008), H. 3-4}, journal = {Technische Mechanik. 28 (2008), H. 3-4}, pages = {299 -- 309}, year = {2008}, language = {en} } @inproceedings{StaatTran2022, author = {Staat, Manfred and Tran, Ngoc Trinh}, title = {Strain based brittle failure criteria for rocks}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {500 -- 509}, year = {2022}, abstract = {When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These "paradox" fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @article{StaatSponagelNguyen2010, author = {Staat, Manfred and Sponagel, Stefan and Nguyen, Nhu Huynh}, title = {Experiment and material model for soft tissue materials}, series = {Constitutive models for rubber VI : proceedings of the sixth European Conference on Constitutive Models for Rubber, Dresden, Germany, 7 - 10 September 2009 / eds. Gert Heinrich ...}, journal = {Constitutive models for rubber VI : proceedings of the sixth European Conference on Constitutive Models for Rubber, Dresden, Germany, 7 - 10 September 2009 / eds. Gert Heinrich ...}, publisher = {CRC Press}, address = {Boca Raton [u.a.]}, isbn = {978-0-415-56327-7}, pages = {465 -- 470}, year = {2010}, language = {en} } @article{StaatSchwartzLangetal.2003, author = {Staat, Manfred and Schwartz, M. and Lang, H. and Wirtz, K. and Heitzer, M.}, title = {Design by Analysis of Pressure Components by non-linear Optimization}, series = {The 10th International Conference on Pressure Vessel Technology, July 7-10, 2003, Vienna, Austria, Proceedings ICPVT-10 / Zeman, J. L. [ed]}, journal = {The 10th International Conference on Pressure Vessel Technology, July 7-10, 2003, Vienna, Austria, Proceedings ICPVT-10 / Zeman, J. L. [ed]}, publisher = {{\"O}GS, {\"O}sterreichische Gesellschaft f{\"u}r Schweißtechnik}, address = {Wien}, isbn = {3950152814}, pages = {59 -- 65}, year = {2003}, language = {en} } @inproceedings{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, Michael}, title = {Limit and shakedown analysis for plastic design}, year = {1997}, abstract = {Limit and shakedown theorems are exact theories of classical plasticity for the direct computation of safety factors or of the load carrying capacity under constant and varying loads. Simple versions of limit and shakedown analysis are the basis of all design codes for pressure vessels and pipings. Using Finite Element Methods more realistic modeling can be used for a more rational design. The methods can be extended to yield optimum plastic design. In this paper we present a first implementation in FE of limit and shakedown analyses for perfectly plastic material. Limit and shakedown analyses are done of a pipe-junction and a interaction diagram is calculated. The results are in good correspondence with the analytic solution we give in the appendix.}, subject = {Einspielen }, language = {en} } @inproceedings{StaatHeitzer2002, author = {Staat, Manfred and Heitzer, Michael}, title = {The restricted influence of kinematic hardening on shakedown loads}, year = {2002}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratcheting. To this end it is important to make a clear distinction between the shakedown range and the ratcheting range. In cyclic plasticity more sophisticated hardening models have been suggested in order to model the strain evolution observed in ratcheting experiments. The hardening models used in shakedown analysis are comparatively simple. It is shown that shakedown analysis can make quite stable predictions of admissible load ranges despite the simplicity of the underlying hardening models. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. Both give identical or similar shakedown ranges. Structural shakedown analyses show that the loading may have a more pronounced effect than the hardening model.}, subject = {Biomedizinische Technik}, language = {en} } @inproceedings{StaatHeitzer2000, author = {Staat, Manfred and Heitzer, Michael}, title = {Direct static FEM approach to limit and shakedown analysis}, year = {2000}, abstract = {Safety and reliability of structures may be assessed indirectly by stress distributions. Limit and shakedown theorems are simplified but exact methods of plasticity that provide safety factors directly in the loading space. These theorems may be used for a direct definition of the limit state function for failure by plastic collapse or by inadaptation. In a FEM formulation the limit state function is obtained from a nonlinear optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error. Moreover, the direct way leads to highly effective and precise reliability analyses. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis.}, subject = {Einspielen }, language = {en} } @incollection{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, Michael}, title = {Probabilistic limit and shakedown problems}, series = {Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems}, volume = {15}, booktitle = {Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems}, editor = {Staat, Manfred and Heitzer, Michael}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, pages = {217 -- 268}, year = {2003}, language = {en} } @book{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, Michael}, title = {Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems.}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, pages = {2, xiii, 282 Seiten}, year = {2003}, language = {en} } @book{StaatHeitzerYanetal.2000, author = {Staat, Manfred and Heitzer, M. and Yan, Ai-Min and Khoi, Vu Duc and Nguyen, Dang Hung and Valdoire, F. and Lahousse, A.}, title = {Limit Analysis of Defects}, publisher = {Forschungszentrum J{\"u}lich}, address = {J{\"u}lich}, issn = {0944-2952}, pages = {89 S.}, year = {2000}, language = {en} } @article{StaatHeitzerReinersetal.2003, author = {Staat, Manfred and Heitzer, M. and Reiners, H. and Schubert, F.}, title = {Shakedown and ratchetting under tension-torsion loadings: analysis and experiments}, series = {Nuclear Engineering and Design. 225 (2003), H. 1}, journal = {Nuclear Engineering and Design. 225 (2003), H. 1}, isbn = {0029-5493}, pages = {11 -- 26}, year = {2003}, language = {en} } @article{StaatHeitzerLangetal.2005, author = {Staat, Manfred and Heitzer, M. and Lang, H. and Wirtz, K.}, title = {Direct Finite Element Route for Design-by-Analysis of Pressure Components}, series = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 1}, journal = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 1}, isbn = {0308-0161}, pages = {61 -- 67}, year = {2005}, language = {en} } @article{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, M.}, title = {Limit and Shakedown Analysis for Plastic Safety of Complex Structures}, series = {Transactions of the 14th International Conference on Structural Dynamics in Reactor Technology (SMiRT-14) / Livolant, M. [ed]}, journal = {Transactions of the 14th International Conference on Structural Dynamics in Reactor Technology (SMiRT-14) / Livolant, M. [ed]}, address = {Lyon}, pages = {33 -- 40}, year = {1997}, language = {en} } @article{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, M.}, title = {Limit and Shakedown Analysis Using a General Purpose Finite Element Code}, series = {Proceedings of NAFEMS World Congress '97 on Design, Simulation \& Optimisation : reliability \& applicability of computational methods ; Stuttgart, Germany, 9 - 11 April 1997}, journal = {Proceedings of NAFEMS World Congress '97 on Design, Simulation \& Optimisation : reliability \& applicability of computational methods ; Stuttgart, Germany, 9 - 11 April 1997}, publisher = {NAFEMS}, address = {Glasgow}, isbn = {1-87437-620-4}, pages = {522 -- 533}, year = {1997}, language = {en} } @article{StaatHeitzer2000, author = {Staat, Manfred and Heitzer, M.}, title = {Reliability Analysis of Elasto-Plastic Structures under Variable Loads}, series = {Inelastic analysis of structures under variable loads : theory and engineering applications / Maier, G.; Weichert, D. [ed]}, journal = {Inelastic analysis of structures under variable loads : theory and engineering applications / Maier, G.; Weichert, D. [ed]}, publisher = {Kluwer Academic Publ.}, address = {Dordrecht}, isbn = {0-7923-6645-X}, pages = {269 -- 288}, year = {2000}, language = {en} } @article{StaatHeitzer1999, author = {Staat, Manfred and Heitzer, M.}, title = {Structural Reliability Analysis of Elasto-Plastic Structures}, series = {Safety and reliability : proceedings of ESREL '99, the Tenth European Conference on Safety and Reliability, Munich-Garching, Germany, 13 - 17 September 1999 / Schu{\"e}ller, G. I.; Kafka, P. [eds]}, journal = {Safety and reliability : proceedings of ESREL '99, the Tenth European Conference on Safety and Reliability, Munich-Garching, Germany, 13 - 17 September 1999 / Schu{\"e}ller, G. I.; Kafka, P. [eds]}, publisher = {Balkema}, address = {Rotterdam}, isbn = {90-5809-109-0}, pages = {513 -- 518}, year = {1999}, language = {en} } @article{StaatHeitzer2002, author = {Staat, Manfred and Heitzer, M.}, title = {Limit and Shakedown Analysis with Uncertain Data}, series = {Stochastic optimization techniques : numerical methods and technical applications / Marti, K. [ed]}, journal = {Stochastic optimization techniques : numerical methods and technical applications / Marti, K. [ed]}, publisher = {Springer}, address = {Heidelberg}, isbn = {3-540-42889-5}, pages = {241 -- 254}, year = {2002}, language = {en} } @article{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, M.}, title = {Probabilistic limit and shakedown problems}, series = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M; Heitzer, M.}, journal = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M; Heitzer, M.}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, pages = {217 -- 268}, year = {2003}, language = {en} } @incollection{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, M.}, title = {Basis reduction technique for limit and shakedown problems}, series = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M.; Heitzer, M.}, booktitle = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M.; Heitzer, M.}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, url = {http://nbn-resolving.de/urn:nbn:de:0001-2018112115}, pages = {1 -- 55}, year = {2003}, language = {en} } @article{StaatHeitzer1999, author = {Staat, Manfred and Heitzer, M.}, title = {FEM-computation of load carrying capacity of highly loaded passive components by direct methods. Heitzer, M. ; Staat, M.}, series = {Nuclear Engineering and Design. 193 (1999), H. 3}, journal = {Nuclear Engineering and Design. 193 (1999), H. 3}, isbn = {0029-5493}, pages = {349 -- 358}, year = {1999}, language = {en} } @article{StaatFioriniLensaetal.1997, author = {Staat, Manfred and Fiorini, G. L. and Lensa, W. von and Burgazzi, L.}, title = {Reliability Methods for Passive Safety Functions}, series = {Proceedings of the SMiRT 14 Post Conference Seminar No 18 on Passive Safety Features in Nuclear Installations}, journal = {Proceedings of the SMiRT 14 Post Conference Seminar No 18 on Passive Safety Features in Nuclear Installations}, address = {Pisa}, year = {1997}, language = {en} } @book{StaatErni2019, author = {Staat, Manfred and Erni, Daniel}, title = {Symposium Proceedings; 3rd YRA MedTech Symposium 2019: May 24 / 2019 / FH Aachen}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {49 Seiten}, year = {2019}, language = {en} } @inproceedings{StaatDuong2016, author = {Staat, Manfred and Duong, Minh Tuan}, title = {Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies}, series = {Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2}, booktitle = {Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2}, pages = {440 -- 445}, year = {2016}, abstract = {The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials. Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects.}, language = {en} } @book{StaatDigelTrzewiketal.2024, author = {Staat, Manfred and Digel, Ilya and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, title = {Symposium Proceedings; 4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {40 Seiten}, year = {2024}, language = {en} } @misc{StaatBarry2006, author = {Staat, Manfred and Barry, Steve}, title = {Continuum Mechanics with an Introduction to the Finite Element Method / Steve Barry; Manfred Staat. With extensions by Manfred Staat.}, year = {2006}, abstract = {Contents: 1 Introduction 2 One Dimensional Continuum Mechanics 3 Tensors 4 Three Dimensional Stress and Strain 5 Conservation Laws 6 Contiunuum Modelling 7 Plain Problems 8 Questions 9 Reference Information}, subject = {Technische Mechanik}, language = {en} } @article{StaatBaroudTopcuetal.2008, author = {Staat, Manfred and Baroud, G. and Topcu, M. and Sponagel, Stefan}, title = {Soft Materials in Technology and Biology - Characteristics, Properties, and Parameter Identification}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {253 -- 315}, year = {2008}, language = {en} } @article{StaatBallmann1988, author = {Staat, Manfred and Ballmann, J.}, title = {Computation of impacts on elastic solids by methods of bicharacteristics}, series = {Computational Mechanics '88 : theory and applications ; proceedings of the International Conference on Computational Engineering Science April 10-14, 1988, Atlanta, GA, USA ; vol. 2}, journal = {Computational Mechanics '88 : theory and applications ; proceedings of the International Conference on Computational Engineering Science April 10-14, 1988, Atlanta, GA, USA ; vol. 2}, pages = {1719 -- 1722}, year = {1988}, abstract = {Shock waves, explosions, impacts or cavitation bubble collapses may generate stress waves in solids causing cracks or unexpected dammage due to focussing, physical nonlinearity or interaction with existing cracks. There is a growing interest in wave propagation, which poses many novel problems to experimentalists and theorists.}, subject = {Bicharakteristikenverfahren}, language = {en} } @article{StaatBallmann1988, author = {Staat, Manfred and Ballmann, J.}, title = {Wave Propagation and Focussing in Plates}, series = {Impact loading and dynamic behaviour of materials : Papers presented at the International Conference on Impact Loading and Dynamic Behaviour of Materials, Vol. 2 / Chiem, C. Y.; Kunze, L. (u.a.) [eds]}, journal = {Impact loading and dynamic behaviour of materials : Papers presented at the International Conference on Impact Loading and Dynamic Behaviour of Materials, Vol. 2 / Chiem, C. Y.; Kunze, L. (u.a.) [eds]}, publisher = {DGM Informationsges.}, address = {Oberursel}, year = {1988}, language = {en} } @inproceedings{StaatBallmann1989, author = {Staat, Manfred and Ballmann, J.}, title = {Fundamental aspects of numerical methods for the propagation of multi-dimensional nonlinear waves in solids}, series = {Nonlinear hyperbolic equations : theory, computations methods, and applications ; proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen}, booktitle = {Nonlinear hyperbolic equations : theory, computations methods, and applications ; proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen}, pages = {574 -- 588}, year = {1989}, abstract = {The nonlinear scalar constitutive equations of gases lead to a change in sound speed from point to point as would be found in linear inhomogeneous (and time dependent) media. The nonlinear tensor constitutive equations of solids introduce the additional local effect of solution dependent anisotropy. The speed of a wave passing through a point changes with propagation direction and its rays are inclined to the front. It is an open question whether the widely used operator splitting techniques achieve a dimensional splitting with physically reasonable results for these multi-dimensional problems. May be this is the main reason why the theoretical and numerical investigations of multi-dimensional wave propagation in nonlinear solids are so far behind gas dynamics. We hope to promote the subject a little by a discussion of some fundamental aspects of the solution of the equations of nonlinear elastodynamics. We use methods of characteristics because they only integrate mathematically exact equations which have a direct physical interpretation.}, subject = {Nichtlineare Welle}, language = {en} } @article{Staat1996, author = {Staat, Manfred}, title = {Problems and Chances for Probabilistic Fracture Mechanics in the Analysis of Steel Pressure Boundary Reliability}, series = {Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an Advisory Group Meeting held in J{\"u}lich, 21-24 November 1994}, journal = {Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an Advisory Group Meeting held in J{\"u}lich, 21-24 November 1994}, address = {Vienna}, pages = {43 -- 55}, year = {1996}, language = {en} } @article{Staat1993, author = {Staat, Manfred}, title = {Sensitivity of and Influences on the Reliability of an HTR-Module Primary Circuit Pressure Boundary}, series = {Transactions of the 12th International Conference on Structural Mechanics in Reactor Technology (SMiRT-12) / Kussmaul, K. [ed]}, journal = {Transactions of the 12th International Conference on Structural Mechanics in Reactor Technology (SMiRT-12) / Kussmaul, K. [ed]}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0-444-81515-5}, pages = {147 -- 152}, year = {1993}, language = {en} } @article{Staat1993, author = {Staat, Manfred}, title = {Reliability of the Primary Circuit Pressure Boundary of an HTR-Module under Accident Conditions}, series = {Safety and reliability assessment : an integral approach ; ESREL'93 ; proceedings of the European Safety and Reliability Conference, Munich, Germany, May 10th - 12th 1993 / Kafka, P. [ed]}, journal = {Safety and reliability assessment : an integral approach ; ESREL'93 ; proceedings of the European Safety and Reliability Conference, Munich, Germany, May 10th - 12th 1993 / Kafka, P. [ed]}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0-444-81561-9}, pages = {331 -- 342}, year = {1993}, language = {en} } @article{Staat2002, author = {Staat, Manfred}, title = {Some Achievements of the European Project LISA for FEM Based Limit and Shakedown Analysis}, series = {Computational mechanics : developments and applications, 2002 : presented at the 2002 ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia, Canada, August 5 - 9. / Badie, N. [ed]}, journal = {Computational mechanics : developments and applications, 2002 : presented at the 2002 ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia, Canada, August 5 - 9. / Badie, N. [ed]}, publisher = {American Society of Mechanical Engineers}, address = {New York}, isbn = {0791846520}, pages = {177 -- 185}, year = {2002}, language = {en} } @article{Staat2004, author = {Staat, Manfred}, title = {Plastic collapse analysis of longitudinally flawed pipes and vessels}, series = {Nuclear Engineering and Design. 234 (2004), H. 1-3}, journal = {Nuclear Engineering and Design. 234 (2004), H. 1-3}, isbn = {0029-5493}, pages = {25 -- 43}, year = {2004}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels}, series = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 3}, journal = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 3}, isbn = {0308-0161}, pages = {217 -- 225}, year = {2005}, language = {en} } @article{Staat1993, author = {Staat, Manfred}, title = {Failure probabilities of the primary circuit pressure boundary of an HTR-Module for process heat generation under accident conditions for different failure modes}, series = {Nuclear Engineering and Design. 144 (1993), H. 1}, journal = {Nuclear Engineering and Design. 144 (1993), H. 1}, isbn = {0029-5493}, pages = {53 -- 67}, year = {1993}, language = {en} } @article{Staat1995, author = {Staat, Manfred}, title = {Reliability of an HTR-module primary circuit pressure boundary Influences, sensitivity, and comparison with a PWR}, series = {Nuclear Engineering and Design. 158 (1995), H. 2-3}, journal = {Nuclear Engineering and Design. 158 (1995), H. 2-3}, isbn = {0029-5493}, pages = {333 -- 340}, year = {1995}, language = {en} } @article{Staat1996, author = {Staat, Manfred}, title = {Probabilistic assessment of the fracture mechanics behaviour of an HTR-module primary circuit pressure boundary}, series = {Nuclear Engineering and Design. 160 (1996), H. 1-2}, journal = {Nuclear Engineering and Design. 160 (1996), H. 1-2}, isbn = {0029-5493}, pages = {221 -- 236}, year = {1996}, language = {en} } @article{Staat2013, author = {Staat, Manfred}, title = {Limit and shakedown analysis under uncertainty}, series = {International journal of computational methods : IJCM}, journal = {International journal of computational methods : IJCM}, publisher = {World Scientific Publishing}, address = {Singapore}, issn = {0219-8762}, pages = {Publ. online}, year = {2013}, language = {en} } @article{Staat2004, author = {Staat, Manfred}, title = {Plastic collapse analysis of longitudinally flawed pipes and vessels}, year = {2004}, abstract = {Improved collapse loads of thick-walled, crack containing pipes and vessels are suggested. Very deep cracks have a residual strength which is better modelled by a global limit load. In all burst tests, the ductility of pressure vessel steels was sufficiently high whereby the burst pressure could be predicted by limit analysis with no need to apply fracture mechanics. The relative prognosis error increases however, for long and deep defects due to uncertainties of geometry and strength data.}, subject = {Druckbeh{\"a}lter}, language = {en} } @article{Staat2001, author = {Staat, Manfred}, title = {Cyclic plastic deformation tests to verify FEM-based shakedown analyses}, year = {2001}, abstract = {Fatigue analyses are conducted with the aim of verifying that thermal ratcheting is limited. To this end it is important to make a clear distintion between the shakedown range and the ratcheting range (continuing deformation). As part of an EU-supported research project, experiments were carried out using a 4-bar model. The experiment comprised a water-cooled internal tube, and three insulated heatable outer test bars. The system was subjected to alternating axial forces, superimposed with alternating temperatures at the outer bars. The test parameters were partly selected on the basis of previous shakedown analyses. During the test, temperatures and strains were measured as a function of time. The loads and the resulting stresses were confirmed on an ongoing basis during performance of the test, and after it. Different material models were applied for this incremental elasto-plastic analysis using the ANSYS program. The results of the simulation are used to verify the FEM-based shakedown analysis.}, subject = {Materialerm{\"u}dung}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels}, year = {2005}, abstract = {Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Direct finite element route for design-by-analysis of pressure components}, year = {2005}, abstract = {In the new European standard for unfired pressure vessels, EN 13445-3, there are two approaches for carrying out a Design-by-Analysis that cover both the stress categorization method (Annex C) and the direct route method (Annex B) for a check against global plastic deformation and against progressive plastic deformation. This paper presents the direct route in the language of limit and shakedown analysis. This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for mechanical and thermal actions. One observation from the examples is that the so-called 3f (3Sm) criterion fails to be a reliable check against progressive plastic deformation. Precise conditions are given, which greatly restrict the applicability of the 3f criterion.}, subject = {Einspielen }, language = {en} } @article{Staat2003, author = {Staat, Manfred}, title = {Shakedown and ratchetting under tension-torsion loadings: analysis and experiments}, year = {2003}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.}, subject = {Einspielen }, language = {en} } @article{Staat2000, author = {Staat, Manfred}, title = {Basis Reduction for the Shakedown Problem for Bounded Kinematic Hardening Material}, year = {2000}, abstract = {Limit and shakedown analysis are effective methods for assessing the load carrying capacity of a given structure. The elasto-plastic behavior of the structure subjected to loads varying in a given load domain is characterized by the shakedown load factor, defined as the maximum factor which satisfies the sufficient conditions stated in the corresponding static shakedown theorem. The finite element dicretization of the problem may lead to very large convex optimization. For the effective solution a basis reduction method has been developed that makes use of the special problem structure for perfectly plastic material. The paper proposes a modified basis reduction method for direct application to the two-surface plasticity model of bounded kinematic hardening material. The considered numerical examples show an enlargement of the load carrying capacity due to bounded hardening.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{Staat2003, author = {Staat, Manfred}, title = {Design by Analysis of Pressure Components by non-linear Optimization}, year = {2003}, abstract = {This paper presents the direct route to Design by Analysis (DBA) of the new European pressure vessel standard in the language of limit and shakedown analysis (LISA). This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for some examples from the DBA-Manual. One observation from the examples is, that the optimisation approach gives reliable and close lower bound solutions leading to simple and optimised design decision.}, language = {en} } @article{Staat2001, author = {Staat, Manfred}, title = {LISA - a European project for FEM-based limit and shakedown analysis}, year = {2001}, abstract = {The load-carrying capacity or the safety against plastic limit states are the central questions in the design of structures and passive components in the apparatus engineering. A precise answer is most simply given by limit and shakedown analysis. These methods can be based on static and kinematic theorems for lower and upper bound analysis. Both may be formulated as optimization problems for finite element discretizations of structures. The problems of large-scale analysis and the extension towards realistic material modelling will be solved in a European research project. Limit and shakedown analyses are briefly demonstrated with illustrative examples.}, subject = {Einspielen }, language = {en} } @article{Staat2000, author = {Staat, Manfred}, title = {Direct FEM Limit and Shakedown Analysis with Uncertain Data}, year = {2000}, abstract = {The structural reliability with respect to plastic collapse or to inadaptation is formulated on the basis of the lower bound limit and shakedown theorems. A direct definition of the limit state function is achieved which permits the use of the highly effective first order reliability methods (FORM) is achieved. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis. The limit state function and its gradient are obtained from a mathematical optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error, leading to highly effective and precise reliability analyses.}, subject = {Finite-Elemente-Methode}, language = {en} } @misc{Staat2006, author = {Staat, Manfred}, title = {Engineering Mechanics. Lecture Notes. 2nd edition, translation of the 3rd corrected and extended German edition of "Technische Mechanik"}, year = {2006}, abstract = {English translation of the corrected lectures notes of Sebastian Kr{\"a}mer. Contents 0 Introduction to Mechanics 1 Statics of Rigid Bodies 2 Elastostatics (Strength of Materials) 3 Kinematics 4 Kinetics Literature}, subject = {Technische Mechanik}, language = {en} } @inproceedings{Staat2006, author = {Staat, Manfred}, title = {Problems and chances for probabilistic fracture mechanics in the analysis of steel pressure boundary reliability. - {\"U}berarb. Ausg.}, year = {2006}, abstract = {In: Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an Advisory Group Meeting held in J{\"u}lich, 21-24 November 1994. - Vienna , 1996. - Seite: 43 - 55 IAEA-TECDOC-920 Abstract: It is shown that the difficulty for probabilistic fracture mechanics (PFM) is the general problem of the high reliability of a small population. There is no way around the problem as yet. Therefore what PFM can contribute to the reliability of steel pressure boundaries is demon­strated with the example of a typical reactor pressure vessel and critically discussed. Although no method is distinguishable that could give exact failure probabilities, PFM has several addi­tional chances. Upper limits for failure probability may be obtained together with trends for design and operating conditions. Further, PFM can identify the most sensitive parameters, improved control of which would increase reliability. Thus PFM should play a vital role in the analysis of steel pressure boundaries despite all shortcomings.}, subject = {Bruchmechanik}, language = {en} } @article{Staat2012, author = {Staat, Manfred}, title = {Limit and shakedown analysis under uncertainty}, series = {Tap chi Khoa hoc \& ung dung - Dai hoc Ton Duc Thang}, volume = {19}, journal = {Tap chi Khoa hoc \& ung dung - Dai hoc Ton Duc Thang}, pages = {45 -- 47}, year = {2012}, language = {en} } @article{SchierenKleinschmidtSchmutzetal.2019, author = {Schieren, Mark and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Gatzweiler, Karl-Heinz and Staat, Manfred and Wappler, Frank and Defosse, Jerome}, title = {Comparison of forces acting on maxillary incisors during tracheal intubation with different laryngoscopy techniques: a blinded manikin study}, series = {Anaesthesia}, volume = {74}, journal = {Anaesthesia}, number = {12}, publisher = {Wiley-Blackwell}, address = {Oxford}, isbn = {1365-2044}, doi = {10.1111/anae.14815}, year = {2019}, language = {en} } @article{RauschKahmannBaltschunetal.2020, author = {Rausch, Valentin and Kahmann, Stephanie Lucina and Baltschun, Christoph and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.01.006}, pages = {776.e1 -- 776.e9}, year = {2020}, abstract = {Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques.}, language = {en} } @article{RauschHarbrechtKahmannetal.2020, author = {Rausch, Valentin and Harbrecht, Andreas and Kahmann, Stephanie Lucina and Fenten, Thomas and Jovanovic, Nebojsa and Hackl, Michael and M{\"u}ller, Lars P. and Staat, Manfred and Wegmann, Kilian}, title = {Osteosynthesis of Phalangeal Fractures: Biomechanical Comparison of Kirschner Wires, Plates, and Compression Screws}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.04.010}, pages = {987.e1 -- 987.e8}, year = {2020}, abstract = {Purpose The aim of this study was to compare several osteosynthesis techniques (intramedullary headless compression screws, T-plates, and Kirschner wires) for distal epiphyseal fractures of proximal phalanges in a human cadaveric model. Methods A total of 90 proximal phalanges from 30 specimens (index, ring, and middle fingers) were used for this study. After stripping off all soft tissue, a transverse distal epiphyseal fracture was simulated at the proximal phalanx. The 30 specimens were randomly assigned to 1 fixation technique (30 per technique), either a 3.0-mm intramedullary headless compression screw, locking plate fixation with a 2.0-mm T-plate, or 2 oblique 1.0-mm Kirschner wires. Displacement analysis (bending, distraction, and torsion) was performed using optical tracking of an applied random speckle pattern after osteosynthesis. Biomechanical testing was performed with increasing cyclic loading and with cyclic load to failure using a biaxial torsion-tension testing machine. Results Cannulated intramedullary compression screws showed significantly less displacement at the fracture site in torsional testing. Furthermore, screws were significantly more stable in bending testing. Kirschner wires were significantly less stable than plating or screw fixation in any cyclic load to failure test setup. Conclusions Intramedullary compression screws are a highly stable alternative in the treatment of transverse distal epiphyseal phalangeal fractures. Kirschner wires seem to be inferior regarding displacement properties and primary stability. Clinical relevance Fracture fixation of phalangeal fractures using plate osteosynthesis may have the advantage of a very rigid reduction, but disadvantages such as stiffness owing to the more invasive surgical approach and soft tissue irritation should be taken into account. Headless compression screws represent a minimally invasive choice for fixation with good biomechanical properties.}, language = {en} } @inproceedings{RamanJungHorvathetal.2019, author = {Raman, Aravind Hariharan and Jung, Alexander and Horv{\´a}th, Andr{\´a}s and Becker, Nadine and Staat, Manfred}, title = {Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {10 -- 11}, year = {2019}, abstract = {Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich).}, language = {en} } @article{PhamVuTranetal.2010, author = {Pham, Phu Tinh and Vu, Khoi Duc and Tran, Thanh Ngoc and Staat, Manfred}, title = {A primal-dual algorithm for shakedown analysis of elastic-plastic bounded linearly kinematic hardening bodies}, pages = {1 -- 7}, year = {2010}, language = {en} } @article{PhamStaat2013, author = {Pham, Phu Tinh and Staat, Manfred}, title = {An Upper Bound Algorithm for Limit and Shakedown Analysis of Bounded Linearly Kinematic Hardening Structures}, series = {Limit State of Materials and Structures : Direct Methods 2. Saxc{\´e}, G{\´e}ry de (Hrsg.)}, journal = {Limit State of Materials and Structures : Direct Methods 2. Saxc{\´e}, G{\´e}ry de (Hrsg.)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-5424-9}, pages = {71 -- 87}, year = {2013}, language = {en} } @article{PhamStaat2014, author = {Pham, Phu Tinh and Staat, Manfred}, title = {FEM-based shakedown analysis of hardening structures}, series = {Asia Pacific journal on computational engineering}, journal = {Asia Pacific journal on computational engineering}, number = {1}, publisher = {SpringerOpen}, address = {Berlin}, issn = {2196-1166 (E-Journal)}, doi = {10.1186/2196-1166-1-4}, pages = {Article No. 4}, year = {2014}, abstract = {This paper develops a new finite element method (FEM)-based upper bound algorithm for limit and shakedown analysis of hardening structures by a direct plasticity method. The hardening model is a simple two-surface model of plasticity with a fixed bounding surface. The initial yield surface can translate inside the bounding surface, and it is bounded by one of the two equivalent conditions: (1) it always stays inside the bounding surface or (2) its centre cannot move outside the back-stress surface. The algorithm gives an effective tool to analyze the problems with a very high number of degree of freedom. Our numerical results are very close to the analytical solutions and numerical solutions in literature.}, language = {en} } @inproceedings{PhamStaat2015, author = {Pham, Phu Tinh and Staat, Manfred}, title = {A simplification for shakedown analysis of hardening structures}, series = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, booktitle = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, publisher = {RWTH Aachen University}, address = {Aachen}, organization = {ECCOMAS Young Investigators Conference <3, 2015, Aachen>}, pages = {1 -- 4}, year = {2015}, language = {en} } @inproceedings{PhamNguyenStaat2012, author = {Pham, Phu Tinh and Nguyen, Thanh Ngoc and Staat, Manfred}, title = {FEM based shakedown analysis of hardening structures}, series = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, booktitle = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, pages = {870 -- 882}, year = {2012}, language = {en} } @article{NovacekTranKlingeetal.2012, author = {Novacek, V. and Tran, Thanh Ngoc and Klinge, U. and Tolba, R. H. and Staat, Manfred and Bronson, D. G. and Miesse, A. M. and Whiffen, J. and Turquier, F.}, title = {Finite element modelling of stapled colorectal end-to-end anastomosis : Advantages of variable height stapler design}, series = {Journal of Biomechanics}, volume = {45}, journal = {Journal of Biomechanics}, number = {115}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2380}, doi = {10.1016/j.jbiomech.2012.07.021}, pages = {2693 -- 2697}, year = {2012}, abstract = {The impact of surgical staplers on tissues has been studied mostly in an empirical manner. In this paper, finite element method was used to clarify the mechanics of tissue stapling and associated phenomena. Various stapling modalities and several designs of circular staplers were investigated to evaluate the impact of the device on tissues and mechanical performance of the end-to-end colorectal anastomosis. Numerical simulations demonstrated that a single row of staples is not adequate to resist leakage due to non-linear buckling and opening of the tissue layers between two adjacent staples. Compared to the single staple row configuration, significant increase in stress experienced by the tissue at the inner staple rows was observed in two and three rows designs. On the other hand, adding second and/or third staple row had no effect on strain in the tissue inside the staples. Variable height design with higher staples in outer rows significantly reduced the stresses and strains in outer rows when compared to the same configuration with flat cartridge.}, language = {en} } @article{NguyenDuongTranetal.2012, author = {Nguyen, Nhu Huynh and Duong, Minh Tuan and Tran, Thanh Ngoc and Pham, Phu Tinh and Grottke, O. and Tolba, R. and Staat, Manfred}, title = {Influence of a freeze-thaw cycle on the stress-stretch curves of tissues of porcine abdominal organs}, series = {Journal of Biomechanics}, volume = {45}, journal = {Journal of Biomechanics}, number = {14}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2380}, doi = {10.1016/j.jbiomech.2012.07.008}, pages = {2382 -- 2386}, year = {2012}, abstract = {The paper investigates both fresh porcine spleen and liver and the possible decomposition of these organs under a freeze-thaw cycle. The effect of tissue preservation condition is an important factor which should be taken into account for protracted biomechanical tests. In this work, tension tests were conducted for a large number of tissue specimens from twenty pigs divided into two groups of 10. Concretely, the first group was tested in fresh state; the other one was tested after a freeze-thaw cycle which simulates the conservation conditions before biomechanical experiments. A modified Fung model for isotropic behavior was adopted for the curve fitting of each kind of tissues. Experimental results show strong effects of the realistic freeze-thaw cycle on the capsule of elastin-rich spleen but negligible effects on the liver which virtually contains no elastin. This different behavior could be explained by the autolysis of elastin by elastolytic enzymes during the warmer period after thawing. Realistic biomechanical properties of elastin-rich organs can only be expected if really fresh tissue is tested. The observations are supported by tests of intestines.}, language = {en} }