@article{MiyamotoIchimuraWagneretal.2012, author = {Miyamoto, K. and Ichimura, H. and Wagner, Torsten and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Chemical Imaging of ion Diffusion in a Microfluidic Channel}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.289}, pages = {886 -- 889}, year = {2012}, abstract = {The chemical imaging sensor is a chemical sensor which is capable of visualizing the spatial distribution of chemical species in sample solution. In this study, a novel measurement system based on the chemical imaging sensor was developed to observe the inside of a Y-shaped microfluidic channel while injecting two sample solutions from two branches. From the collected chemical images, it was clearly observed that the injected solutions formed laminar flows in the microfluidic channel. In addition, ion diffusion across the laminar flows was observed. This label-free method can acquire quantitative data of ion distribution and diffusion in microfluidic devices, which can be used to determine the diffusion coefficients, and therefore, the molecular weights of chemical species in the sample solution.}, language = {en} } @article{MiyamotoIchimuraWagneretal.2013, author = {Miyamoto, Ko-ichiro and Ichimura, Hiroki and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel}, series = {Sensors and actuators. B: Chemical}, volume = {189}, journal = {Sensors and actuators. B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2013.04.057}, pages = {240 -- 245}, year = {2013}, abstract = {The chemical imaging sensor is a device to visualize the spatial distribution of chemical species based on the principle of LAPS (light-addressable potentiometric sensor), which is a field-effect chemical sensor based on semiconductor. In this study, the chemical imaging sensor has been applied to investigate the ion profile of laminar flows in a microfluidic channel. The chemical images (pH maps) were collected in a Y-shaped microfluidic channel while injecting HCl and NaCl solutions into two branches. From the chemical images, it was clearly observed that the injected solutions formed laminar flows in the channel. In addition, ion diffusion across the laminar flows was observed, and the diffusion coefficient could be derived by fitting the pH profiles to the Fick's equation.}, language = {en} } @article{YoshinobuEckenIsmailetal.2001, author = {Yoshinobu, T. and Ecken, H. and Ismail, Md.A.B. and Iwasaki, H. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Chemical imaging sensor and its application to biological systems}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {259 -- 263}, year = {2001}, language = {en} } @article{SchoeningHoffmannBrunsetal.1993, author = {Sch{\"o}ning, Michael Josef and Hoffmann, W. and Bruns, M. and Ache, H.J. (u.a.)}, title = {Chemical microsensors and evaporated silver halide layers}, series = {Bulgarian Chemical Communications. 26 (1993), H. 3-4}, journal = {Bulgarian Chemical Communications. 26 (1993), H. 3-4}, isbn = {0324-1130}, pages = {402 -- 410}, year = {1993}, language = {en} } @article{SchoeningThustKordosetal.1999, author = {Sch{\"o}ning, Michael Josef and Thust, M. and Kordos, P. and L{\"u}th, H.}, title = {Chemical sensing structures - From EIS capacitors to array-type sensors}, series = {Solid state chemical and biochemical sensors : proceedings of Topical Symposium 9 - "Solid State Chemical and Biochemical Sensors" of the Forum on New Materials of the 9th CIMTEC-World Ceramics Congress and Forum on New Materials Florence, Italy June 14-1}, journal = {Solid state chemical and biochemical sensors : proceedings of Topical Symposium 9 - "Solid State Chemical and Biochemical Sensors" of the Forum on New Materials of the 9th CIMTEC-World Ceramics Congress and Forum on New Materials Florence, Italy June 14-1}, publisher = {Techna}, address = {Faenza}, isbn = {88-86538-27-8}, pages = {55 -- 62}, year = {1999}, language = {en} } @article{PoghossianBerndsenSchoening2002, author = {Poghossian, Arshak and Berndsen, L. and Sch{\"o}ning, Michael Josef}, title = {Chemical sensor as a physical sensor: ISFET-based flowvelocity, flow-direction and diffusion-coefficient sensor}, series = {Book of abstracts / ed. by J. Saneistr.}, journal = {Book of abstracts / ed. by J. Saneistr.}, publisher = {Czech Technical University, Faculty of Electrical Engineering, Department of Measurement}, address = {Prague}, isbn = {80-01-02576-4}, pages = {649 -- 652}, year = {2002}, language = {en} } @article{PoghossianBerndsenSchoening2003, author = {Poghossian, Arshak and Berndsen, Lars and Sch{\"o}ning, Michael Josef}, title = {Chemical sensor as physical sensor: ISFET-based flowvelocity, flow-direction and diffusion-coefficient sensor}, series = {Sensors and Actuators B. 95 (2003), H. 1-3}, journal = {Sensors and Actuators B. 95 (2003), H. 1-3}, isbn = {0925-4005}, pages = {384 -- 390}, year = {2003}, language = {en} } @article{HuckPoghossianBaeckeretal.2014, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Reisert, Steffen and Schubert, J. and Zander, W. and Begoyan, V. K. and Buniatyan, V. V. and Sch{\"o}ning, Michael Josef}, title = {Chemical sensors based on a high-k perovskite oxide of barium strontium titanate}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.258}, pages = {28 -- 31}, year = {2014}, abstract = {High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors for liquids. In this work, BST films have been applied as a sensitive transducer material for a label-free detection of adsorbed charged macromolecules (positively charged polyelectrolytes) and concentration of hydrogen peroxide vapor as well as protection insulator layer for a contactless electrolyte-conductivity sensor. The experimental results of characterization of individual sensors are presented. Special emphasis is devoted towards the development of a capacitively-coupled contactless electrolyte-conductivity sensor.}, language = {en} } @article{BaeckerRakowskiPoghossianetal.2013, author = {B{\"a}cker, Matthias and Rakowski, D. and Poghossian, Arshak and Biselli, Manfred and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis}, series = {Journal of Biotechnology}, volume = {163}, journal = {Journal of Biotechnology}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2012.03.014}, pages = {371 -- 376}, year = {2013}, abstract = {A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The sensors have been characterized in terms of sensitivity, linear working range and detection limit. The sensitivity evaluated from the respective peak areas was 1.47, 3.68 and 0.28 μAs/mM for the glucose, glutamate and glutamine sensor, respectively. The calibration curves were linear up to a concentration of 20 mM glucose and glutamine and up to 10 mM for glutamate. The lower detection limit amounted to be 0.05 mM for the glucose and glutamate sensor, respectively, and 0.1 mM for the glutamine sensor. Experiments in cell-culture medium have demonstrated a good correlation between the glutamate, glutamine and glucose concentrations measured with the chip-based biosensors in a differential-mode and the commercially available instrumentation. The obtained results demonstrate the feasibility of the realized microfluidic biosensor chip for monitoring of bioprocesses.}, language = {en} } @article{MolinnusHardtKaeveretal.2018, author = {Molinnus, Denise and Hardt, G. and K{\"a}ver, L. and Willenberg, H.S. and Kr{\"o}ger, J.-C. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling}, series = {Sensor and Actuators B: Chemical}, volume = {272}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.05.136}, pages = {21 -- 27}, year = {2018}, abstract = {A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician.}, language = {en} } @article{SchoeningBrinkmannRolkaetal.2005, author = {Sch{\"o}ning, Michael Josef and Brinkmann, D. and Rolka, David and Demuth, C. and Poghossian, Arshak}, title = {CIP (cleaning-in-place) suitable "non-glass" pH sensor based on a Ta2O5-gate EIS structure}, series = {Sensors and Actuators B: Chemical. 111-112 (2005)}, journal = {Sensors and Actuators B: Chemical. 111-112 (2005)}, isbn = {0925-4005}, pages = {423 -- 429}, year = {2005}, language = {en} } @article{SchoeningBrinkmannDemuthetal.2004, author = {Sch{\"o}ning, Michael Josef and Brinkmann, D. and Demuth, C. and Poghossian, Arshak}, title = {CIP (cleaning-in-place)-suitable „non-glass" pH sensor based on a Ta2O5-gate EIS structure}, series = {Digest of technical papers : September 12 - 15, 2004, Rome, Italy, Pontificia Universitas Sancto Thoma Aquinate in Urbe / [conference chairperson: C. Di Natale].}, journal = {Digest of technical papers : September 12 - 15, 2004, Rome, Italy, Pontificia Universitas Sancto Thoma Aquinate in Urbe / [conference chairperson: C. Di Natale].}, address = {Roma}, isbn = {88-7621-282-5}, pages = {857 -- 860}, year = {2004}, language = {en} } @article{HuckPoghossianWagneretal.2012, author = {Huck, Christina and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Combined amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.10.050}, pages = {168 -- 173}, year = {2012}, abstract = {Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3\% (v/v) with a slope of 198.4 ± 13.7 nA/\% (v/v) and 14.9 ± 0.5 mV/\% (v/v), respectively.}, language = {en} } @article{ArreolaKeusgenWagneretal.2019, author = {Arreola, Julio and Keusgen, Michael and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines}, series = {Biosensors and Bioelectronics}, volume = {143}, journal = {Biosensors and Bioelectronics}, number = {111628}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.111628}, year = {2019}, language = {en} } @article{WernerTakenagaTakietal.2013, author = {Werner, Frederik and Takenaga, Shoko and Taki, Hidenori and Sawada, Kazuaki and Sch{\"o}ning, Michael Josef}, title = {Comparison of label-free ACh-imaging sensors based on CCD and LAPS}, series = {Sensors and Actuators B: Chemical (2012)}, volume = {177}, journal = {Sensors and Actuators B: Chemical (2012)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0925-4005}, pages = {745 -- 752}, year = {2013}, abstract = {Semiconductor-based chemical imaging sensors, like the light-addressable potentiometric sensor (LAPS) or the pH-imaging sensor based on a charge-coupled device (CCD), are becoming a powerful tool for label-free imaging of biological phenomena. We have proposed a polyion-based enzymatic membrane to develop an acetylcholine (ACh) imaging sensor for neural cell-activity observations. In this study, a CCD-type ACh-imaging sensor and a LAPS-type ACh-imaging sensor were fabricated and the prospect of both sensors was clarified by making a comparison of their basic characteristics.}, language = {en} } @article{MolinnusBaeckerIkenetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Iken, Heiko and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Concept for a biomolecular logic chip with an integrated sensor and actuator function}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431913}, pages = {1382 -- 1388}, year = {2015}, abstract = {A concept for a new generation of an integrated multi-functional biosensor/actuator system is developed, which is based on biomolecular logic principles. Such a system is expected to be able to detect multiple biochemical input signals simultaneously and in real-time and convert them into electrical output signals with logical operations such as OR, AND, etc. The system can be designed as a closed-loop drug release device triggered by an enzyme logic gate, while the release of the drug induced by the actuator at the required dosage and timing will be controlled by an additional drug sensor. Thus, the system could help to make an accurate and specific diagnosis. The presented concept is exemplarily demonstrated by using an enzyme logic gate based on a glucose/glucose oxidase system, a temperature-responsive hydrogel mimicking the actuator function and an insulin (drug) sensor. In this work, the results of functional testing of individual amperometric glucose and insulin sensors as well as an impedimetric sensor for the detection of the hydrogel swelling/shrinking are presented.}, language = {en} } @article{BaeckerBegingBisellietal.2009, author = {B{\"a}cker, Matthias and Beging, Stefan and Biselli, Manfred and Poghossian, Arshak and Wang, J. and Zang, Werner and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Concept for a solid-state multi-parameter sensor system for cell-culture monitoring}, series = {Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI}, journal = {Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0013-4686}, pages = {6107 -- 6112}, year = {2009}, language = {en} } @article{SchoeningSchrothSchuetzetal.2000, author = {Sch{\"o}ning, Michael Josef and Schroth, P. and Sch{\"u}tz, S. and Hummel, Hans E. and L{\"u}th, H.}, title = {Connecting an insect antenna to a microchip as a novel type of biosensor}, series = {Proceedings : applications, trends, visions / VDE World Microtechnologies Congress, September 25 - 27, 2000, Expo 2000, Hannover, Germany. Organized by VDE Association for Electrical, Electronic \& Information Technologies ....Vol 2.}, journal = {Proceedings : applications, trends, visions / VDE World Microtechnologies Congress, September 25 - 27, 2000, Expo 2000, Hannover, Germany. Organized by VDE Association for Electrical, Electronic \& Information Technologies ....Vol 2.}, publisher = {VDE-Verl.}, address = {[Berlin] [u.a.]}, isbn = {3-8007-2579-7}, pages = {411 -- 416}, year = {2000}, language = {en} } @article{YoshinobuEckenPoghossianetal.2001, author = {Yoshinobu, T. and Ecken, H. and Poghossian, Arshak and Simonis, A. and Iwasaki, H. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Constant-current-mode LAPS (CLAPS) for the detection of penicillin}, series = {Electroanalysis. 13 (2001), H. 8-9}, journal = {Electroanalysis. 13 (2001), H. 8-9}, isbn = {1040-0397}, pages = {733 -- 736}, year = {2001}, language = {en} } @article{MiyamotoWagnerMimuraetal.2009, author = {Miyamoto, Ko-ichiro and Wagner, Torsten and Mimura, Shuhei and Kanoh, Shin`ichiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Constant-phase-mode operation of the light-addressable potentiometric sensor}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1876-6196}, pages = {1487 -- 1490}, year = {2009}, language = {en} } @article{MiyamotoWagnerMimuraetal.2011, author = {Miyamoto, Ko-ichiro and Wagner, Torsten and Mimura, Shuhei and Kanoh, Shin{\´i}chiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Constant-phase-mode operation of the light-addressable potentiometric sensor}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {119 -- 123}, year = {2011}, language = {en} } @article{ReisertGeisslerFlorkeetal.2011, author = {Reisert, Steffen and Geissler, H. and Florke, R. and Wagner, P. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Controlling aseptic sterilization processes by means of a multi-sensor system}, publisher = {IEEE}, address = {New York}, pages = {18 -- 22}, year = {2011}, language = {en} } @article{HennemannKohlReisertetal.2013, author = {Hennemann, J{\"o}rg and Kohl, Claus-Dieter and Reisert, Steffen and Kirchner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations}, series = {physica status solidi (a)}, volume = {210}, journal = {physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201200775}, pages = {859 -- 863}, year = {2013}, abstract = {We present a sensor concept based on copper(II)oxide (CuO) nanofibres for the detection of hydrogen peroxide (H2O2) vapour in the percent per volume (\% v/v) range. The fibres were produced by using the electrospinning technique. To avoid water condensation in the pores, the fibres were initially modified by an exposure to H2S to get an enclosed surface. By a thermal treatment at 350 °C the fibres were oxidised back to CuO. Thereby, the visible pores disappear which was verified by SEM analysis. The fibres show a decrease of resistance with increasing H2O2 concentration which is due to the fact that hydrogen peroxide is an oxidising gas and CuO a p-type semiconductor. The sensor shows a change of resistance within the minute range to the exposure until the maximum concentration of 6.9\% v/v H2O2. At operating temperatures below 450 °C the corresponding sensor response to a concentration of 4.1\% v/v increases. The sensor shows a good reproducibility of the signal at different measurements. CuO seems to be a suitable candidate for the detection of H2O2 vapour at high concentrations. Resistance behaviour of the sensor under exposure to H2O2 vapours between 2.3 and 6.9\% v/v at an operating temperature of 450 °C.}, language = {en} } @article{MourzinaSchoeningSchubertetal.2001, author = {Mourzina, Y. G. and Sch{\"o}ning, Michael Josef and Schubert, J. and Zander, W. and Legin, A. V. and Vlasov, Y. G. and L{\"u}th, H.}, title = {Copper, cadmium and thallium thin film sensors based on chalcogenide glasses}, series = {Analytica Chimica Acta. 433 (2001)}, journal = {Analytica Chimica Acta. 433 (2001)}, isbn = {0378-4304}, pages = {103 -- 110}, year = {2001}, language = {en} } @article{KraemerPitaZhouetal.2009, author = {Kr{\"a}mer, Melina and Pita, Marcos and Zhou, Jian and Ornatska, Maryna and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Coupling of Biocomputing Systems with Electronic Chips: Electronic Interface for Transduction of Biochemical Information}, series = {Journal of Physical Chemistry C: Nanomaterials and Interfaces. 113 (2009), H. 6}, journal = {Journal of Physical Chemistry C: Nanomaterials and Interfaces. 113 (2009), H. 6}, publisher = {American Cemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {2573 -- 2579}, year = {2009}, language = {en} } @article{MolinnusPoghossianKeusgenetal.2017, author = {Molinnus, Denise and Poghossian, Arshak and Keusgen, Michael and Katz, Evgeny and Sch{\"o}ning, Michael Josef}, title = {Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {8}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700208}, pages = {1840 -- 1849}, year = {2017}, abstract = {The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug-release, and closed-loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field-effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field-effect electrolyte-insulator-semiconductor sensor modified with a multi-enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed-loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor.}, language = {en} } @article{SchrothSchoeningSchuetzetal.1999, author = {Schroth, P. and Sch{\"o}ning, Michael Josef and Sch{\"u}tz, S. and Malkoc, {\"U}. and Steffen, A. and Marso, M. and Hummel, Hans E. and Kordos, P. and L{\"u}th, H.}, title = {Coupling of insect antennae to field-effect transistors for biochemical sensing}, series = {Electrochimica Acta. 44 (1999), H. 21-22}, journal = {Electrochimica Acta. 44 (1999), H. 21-22}, issn = {0013-4686}, pages = {3821 -- 3826}, year = {1999}, language = {en} } @article{ThustPoghossianSchoeningetal.1999, author = {Thust, M. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Naser, S. and M{\"u}ller-Veggian, Mattea and Kordos, P. and L{\"u}th, H.}, title = {Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier}, series = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. - Vol 1.}, journal = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. - Vol 1.}, address = {The Hague, The Netherlands}, isbn = {90-76699-02-X}, pages = {573 -- 576}, year = {1999}, language = {en} } @article{PoghossianThustSchoeningetal.2000, author = {Poghossian, Arshak and Thust, M. and Sch{\"o}ning, Michael Josef and M{\"u}ller-Veggian, Mattea and Kordos, P. and L{\"u}th, H.}, title = {Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier}, series = {Sensors and Actuators B. 68 (2000), H. 1-3}, journal = {Sensors and Actuators B. 68 (2000), H. 1-3}, isbn = {0925-4005}, pages = {260 -- 265}, year = {2000}, language = {en} } @article{ThustPoghossianSchoeningetal.1999, author = {Thust, M. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Naser, S. and M{\"u}ller-Veggian, Mattea and Kordos, P. and L{\"u}th, H.}, title = {Crosssensitivity of a capacitive penicillin sensor combined with a diffusion barrier}, series = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, journal = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, address = {The Hague, The Netherlands}, isbn = {90-76699-02-X}, pages = {573 -- 576}, year = {1999}, language = {en} } @article{GeMeyerSchoeningetal.2000, author = {Ge, B. and Meyer, T. and Sch{\"o}ning, Michael Josef and Wollenberger, U. and Lisdat, F.,}, title = {Cytochrome c' from Chromatium vinosum on gold electrodes}, series = {Electrochemistry Communications. 2 (2000), H. 8}, journal = {Electrochemistry Communications. 2 (2000), H. 8}, isbn = {1388-2481}, pages = {557 -- 561}, year = {2000}, language = {en} } @article{HeiduschkaRomannEckenetal.2001, author = {Heiduschka, P. and Romann, I. and Ecken, H. and Sch{\"o}ning, Michael Josef and Schuhmann, W. and Thanos, S.}, title = {Defined adhesion and growth of neurones on artificial structured substrates}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {299 -- 307}, year = {2001}, language = {en} } @article{SchusserMenzelBaeckeretal.2013, author = {Schusser, Sebastian and Menzel, S. and B{\"a}cker, Matthias and Leinhos, Marcel and Poghossian, Arshak and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Degradation of thin poly(lactic acid) films: characterization by capacitance-voltage, atomic force microscopy, scanning electron microscopy and contact-angle measurements}, series = {Electrochimica Acta}, volume = {Vol. 113}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3859 (E-Journal); 0013-4686 (Print)}, pages = {779 -- 784}, year = {2013}, language = {en} } @article{PoghossianSchoening2004, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Detecting Both Physical and (Bio-)Chemical Parameters by Means of ISFET Devices}, series = {Electroanalysis. 16 (2004), H. 22}, journal = {Electroanalysis. 16 (2004), H. 22}, isbn = {1040-0397}, pages = {1863 -- 1872}, year = {2004}, language = {en} } @article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{MolinnusBaeckerSiegertetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Siegert, Petra and Willenberg, H. and Poghossian, Arshak and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Substrate Recycling Amplification}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.708}, pages = {540 -- 543}, year = {2015}, abstract = {An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied.}, language = {en} } @article{MolinnusHardtSiegertetal.2018, author = {Molinnus, Denise and Hardt, Gabriel and Siegert, Petra and Willenberg, Holger S. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling}, series = {Electroanalysis}, volume = {30}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201800026}, pages = {937 -- 942}, year = {2018}, abstract = {An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5-1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma.}, language = {en} } @article{SchoeningPoghossian2008, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Detection of charged macromolecules by means of field-effect devices (FEDs): possibilities and limitations}, series = {Electrochemical sensors, biosensors and their biomedical applications / ed. by Xueji Zhang ...}, journal = {Electrochemical sensors, biosensors and their biomedical applications / ed. by Xueji Zhang ...}, publisher = {Elsevier Acad. Press}, address = {Amsterdam}, isbn = {978-0-12-373738-0}, pages = {187 -- 212}, year = {2008}, language = {en} } @article{HerberErnstBussetal.1999, author = {Herber, R. and Ernst, S. and Buß, G. and Sch{\"o}ning, Michael Josef and Baltruschat, H.}, title = {Detection of hydrocarbons in air and water by adsorption on Pt electrodes using continuous impedance measurements}, series = {Proceedings of the Symposium on New Directions in Electroanalytical Chemistry II : [held at the 195th Meeting of the Electrochemical Society in Seattle, Washington on May 3 and 4, 1999] / Physical Electrochemistry, Sensor, and Organic and Biological Electrochemistry Divisions. Ed.: J. Leddy, P. Vanysek, M.D. Porter}, journal = {Proceedings of the Symposium on New Directions in Electroanalytical Chemistry II : [held at the 195th Meeting of the Electrochemical Society in Seattle, Washington on May 3 and 4, 1999] / Physical Electrochemistry, Sensor, and Organic and Biological Electrochemistry Divisions. Ed.: J. Leddy, P. Vanysek, M.D. Porter}, publisher = {Electrochemical Society}, address = {Pennington, NJ}, isbn = {1-56677-227-3}, pages = {168 -- 177}, year = {1999}, language = {en} } @article{OberlaenderKirchnerBoyenetal.2014, author = {Oberl{\"a}nder, Jan and Kirchner, Patrick and Boyen, Hans-Gerd and Sch{\"o}ning, Michael Josef}, title = {Detection of hydrogen peroxide vapor by use of manganese(IV) oxide as catalyst for calorimetric gas sensors}, series = {Physica status solidi A: Applications and materials science}, volume = {211}, journal = {Physica status solidi A: Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330359}, pages = {1372 -- 1376}, year = {2014}, abstract = {In this work, the catalyst manganese(IV) oxide (MnO2), of calorimetric gas sensors (to monitor the sterilization agent vaporized hydrogen peroxide) has been investigated in more detail. Chemical analyses by means of X-ray-induced photoelectron spectroscopy have been performed to unravel the surface chemistry prior and after exposure to hydrogen peroxide vapor at elevated temperature, as applied in the sterilization processes of beverage cartons. The surface characterization reveals a change in oxidation states of the metal oxide catalyst after exposure to hydrogen peroxide. Additionally, a cleaning effect of the catalyst, which itself is attached to the sensor surface by means of a polymer interlayer, could be observed.}, language = {en} } @article{KassabHanPoghossianetal.2004, author = {Kassab, T. and Han, Y. and Poghossian, Arshak and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Detection of layerby-layer adsorbed polyelectrolytes by means of field-effect based capacitive EIS structures}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1034 -- 1035}, year = {2004}, language = {en} } @article{EmonsHuellenkremerSchoening2001, author = {Emons, H. and H{\"u}llenkremer, B. and Sch{\"o}ning, Michael Josef}, title = {Detection of metal ions in aqueous solutions by voltohmmetry}, series = {Fresenius' Journal of Analytical Chemistry. 369 (2001), H. 1}, journal = {Fresenius' Journal of Analytical Chemistry. 369 (2001), H. 1}, isbn = {0937-0633}, pages = {42 -- 46}, year = {2001}, language = {en} } @article{BronderJessingPoghossianetal.2018, author = {Bronder, Thomas and Jessing, Max P. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {90}, journal = {Analytical Chemistry}, number = {12}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {0003-2700}, doi = {10.1021/acs.analchem.8b01807}, pages = {7747 -- 7753}, year = {2018}, abstract = {Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results.}, language = {en} } @article{JablonskiPoghossianKeusgenetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Keusgen, Michael and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Detection of plant virus particles with a capacitive field-effect sensor}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer Nature}, address = {Cham}, issn = {1618-2650}, doi = {10.1007/s00216-021-03448-8}, pages = {5669 -- 5678}, year = {2021}, abstract = {Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.}, language = {en} } @article{WarmerWagnerSchoeningetal.2015, author = {Warmer, Johannes and Wagner, Patrick and Sch{\"o}ning, Michael Josef and Kaul, Peter}, title = {Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431882}, pages = {1289 -- 1298}, year = {2015}, language = {en} } @article{WagnerKloockSchoening2007, author = {Wagner, Torsten and Kloock, Joachim P. and Sch{\"o}ning, Michael Josef}, title = {Determination of cadmium concentration and pH value in aqueous solutions by means of a handheld light-addressable potentiometric sensor (LAPS) device}, series = {Electrochemical sensor analysis / edited by S. Alegret ...}, journal = {Electrochemical sensor analysis / edited by S. Alegret ...}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-444-53133-9}, pages = {e35 -- e44}, year = {2007}, language = {en} } @article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} } @article{DantismTakenagaWagneretal.2016, author = {Dantism, Shahriar and Takenaga, Shoko and Wagner, Patrick and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201533043}, pages = {1479 -- 1485}, year = {2016}, abstract = {On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable "down times" during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements.}, language = {en} } @article{SousaSiqueiraVerciketal.2017, author = {Sousa, Marcos A. M. and Siqueira, Jose R. Jr. and Vercik, Andres and Sch{\"o}ning, Michael Josef and Oliveira, Osvaldo N. Jr.}, title = {Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors}, series = {IEEE Sensors Journal}, volume = {17}, journal = {IEEE Sensors Journal}, number = {6}, publisher = {IEEE}, address = {New York}, issn = {1558-1748}, doi = {10.1109/JSEN.2017.2653238}, pages = {1735 -- 1740}, year = {2017}, abstract = {The capacitive electrolyte-insulator-semiconductor (EIS) structure is a typical device based on a field-effect sensor platform. With a simple silicon-based structure, EIS have been useful for several sensing applications, especially with incorporation of nanostructured films to modulate the ionic transport and the flat-band potential. In this paper, we report on ion transport and changes in flat-band potential in EIS sensors made with layer-by-layer films containing poly(amidoamine) (PAMAM) dendrimer and single-walled carbon nanotubes (SWNTs) adsorbed on p-Si/SiO 2 /Ta 2 O 5 chips with an Al ohmic contact. The impedance spectra were fitted using an equivalent circuit model, from which we could determine parameters such as the double-layer capacitance. This capacitance decreased with the number of bilayers owing to space charge accumulated at the electrolyte-insulator interface, up to three PAMAM/SWNTs bilayers, after which it stabilized. The charge-transfer resistance was also minimum for three bilayers, thus indicating that this is the ideal architecture for an optimized EIS performance. The understanding of the influence of nanostructures and the fine control of operation parameters pave the way for optimizing the design and performance of new EIS sensors.}, language = {en} } @article{WagnerWernerMiyamotoetal.2012, author = {Wagner, Torsten and Werner, Frederik and Miyamoto, Ko-Ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2010.12.003}, pages = {34 -- 39}, year = {2012}, abstract = {Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach to read out light-addressable potentiometric sensors (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device, which allows fast and flexible generation of light patterns. With the help of these light patterns, the sensor surface of the LAPS device can be addressed. The DLP approach has several advantages compared to conventional LAPS set-ups, e.g., the spot size and the shape of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of the measurement. In addition, the modulation frequency and intensity of the light beam are important parameters of the LAPS set-up. Within this work, the authors will discuss two different ways of light modulation by the DLP set-up, investigate the influence of different modulation frequencies and different light intensities as well as demonstrate the scanning capabilities of the new set-up by pH mapping on the sensor surface.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{TurekKettererClassenetal.2007, author = {Turek, Monika and Ketterer, Lothar and Claßen, Melanie and Berndt, Heinz and Elbers, Gereon and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and Electrochemical Investigations of an EIS-(Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection}, series = {Sensors}, volume = {7}, journal = {Sensors}, number = {8}, isbn = {1424-8220}, pages = {1415 -- 1426}, year = {2007}, language = {en} } @article{KeusgenJuengerKrestetal.2003, author = {Keusgen, M. and J{\"u}nger, M. and Krest, I. and Sch{\"o}ning, Michael Josef}, title = {Development of a biosensor specific for cysteine sulfoxides}, series = {Biosensors \& Bioelectronics. 18 (2003), H. 5-6}, journal = {Biosensors \& Bioelectronics. 18 (2003), H. 5-6}, isbn = {0956-5663}, pages = {805 -- 812}, year = {2003}, language = {en} } @article{IkenBronderGoretzkietal.2019, author = {Iken, Heiko and Bronder, Thomas and Goretzki, Alexander and Kriesel, Jana and Ahlborn, Kristina and Gerlach, Frank and Vonau, Winfried and Zander, Willi and Schubert, J{\"u}rgen and Sch{\"o}ning, Michael Josef}, title = {Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900114}, pages = {1 -- 8}, year = {2019}, language = {en} } @article{SchoeningWagnerWangetal.2005, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Wang, C. and Otto, R. and Yoshinobu, T.}, title = {Development of a handheld 16 channel pen-type LAPS for electrochemical sensing}, series = {Sensors and Actuators B. 108 (2005)}, journal = {Sensors and Actuators B. 108 (2005)}, isbn = {0925-4005}, pages = {808 -- 814}, year = {2005}, language = {en} } @article{SchoeningWagnerWangetal.2004, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Wang, C. and Otto, R. and Yoshinobu, T.}, title = {Development of a handheld 16 channel pen-type LAPS for electrochemical sensing}, series = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, journal = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, publisher = {Japan Association of Chemical Sensors}, address = {Fukuoka}, pages = {136 -- 137}, year = {2004}, language = {en} } @article{ReisertHenkelSchneideretal.2010, author = {Reisert, Steffen and Henkel, Hartmut and Schneider, Andreas and Sch{\"a}fer, Daniel and Friedrich, Peter and Berger, J{\"o}rg and Sch{\"o}ning, Michael Josef}, title = {Development of a handheld sensor system for the online measurement of hydrogen peroxide in aseptic filling systems}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {913 -- 918}, year = {2010}, language = {en} } @article{PilasIkenSelmeretal.2015, author = {Pilas, Johanna and Iken, Heiko and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431894}, pages = {1306 -- 1312}, year = {2015}, abstract = {An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage.}, language = {en} } @article{JildehKirchnerOberlaenderetal.2020, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Vahidpour, Farnoosh and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide}, series = {Sensor and Actuators A: Physical}, volume = {303}, journal = {Sensor and Actuators A: Physical}, number = {111691}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-4247}, doi = {10.1016/j.sna.2019.111691}, year = {2020}, abstract = {Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor-pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4\% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues.}, language = {en} } @article{WertIkenSchoeningetal.2021, author = {Wert, Stefan and Iken, Heiko and Sch{\"o}ning, Michael Josef and Matysik, Frank-Michael}, title = {Development of a temperature-pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy}, series = {Electroanalysis}, journal = {Electroanalysis}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.202100089}, year = {2021}, abstract = {Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating.}, language = {en} } @article{SpelthahnKirsanovLeginetal.2012, author = {Spelthahn, Heiko and Kirsanov, Dmitry and Legin, Andrey and Osterrath, Thomas and Schubert, J{\"u}rgen and Zander, Willi and Sch{\"o}ning, Michael Josef}, title = {Development of a thin-film sensor array for analytical monitoring of heavy metals in aqueous solutions}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {1862-6319}, doi = {10.1002/pssa.201100733}, pages = {885 -- 891}, year = {2012}, abstract = {In industrial processes there is a variety of heavy metals (e.g., copper, zinc, cadmium, and lead) in use for wires, coatings, paints, alloys, batteries, etc. Since the application of these transition metals for industry is inevitable, it is a vital task to develop proper analytical techniques for their monitoring at low activity levels, especially because most of these elements are acutely toxic for biological organisms. The determination of ions in solution by means of a simple and inexpensive sensor array is, therefore, a promising task. In this work, a sensor array with heavy metal-sensitive chalcogenide glass membranes for the simultaneous detection of the four ions Ag⁺, Cu2⁺, Cd2⁺, and Pb2⁺ in solution is realized. The results of the physical characterization by means of microscopy, profilometry, Rutherford backscattering spectroscopy (RBS), and scanning electron microscopy (SEM) as well as the electrochemical characterization by means of potentiometric measurements are presented. Additionally, the possibility to expand the sensor array by polymeric sensor membranes is discussed.}, language = {en} } @article{RoehlenPilasSchoeningetal.2017, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Development of an amperometric biosensor platform for the combined determination of l-Malic, Fumaric, and l-Aspartic acid}, series = {Applied Biochemistry and Biotechnology}, volume = {183}, journal = {Applied Biochemistry and Biotechnology}, publisher = {Springer}, address = {Berlin}, issn = {1559-0291}, doi = {10.1007/s12010-017-2578-1}, pages = {566 -- 581}, year = {2017}, abstract = {Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM-1 (L-malate biosensor) and 0.4 μA mM-1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM-1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.}, language = {en} } @article{SpelthahnSchaffrathCoppeetal.2010, author = {Spelthahn, Heiko and Schaffrath, Sophie and Coppe, Thomas and Rufi, Frederic and Sch{\"o}ning, Michael Josef}, title = {Development of an electrolyte-insulator-semiconductor (EIS) based capacitive heavy metal sensor for the detection of Pb2+ und Cd2+ ions}, series = {Physica status solidi (a) : applications and material science. 207 (2010), H. 4}, journal = {Physica status solidi (a) : applications and material science. 207 (2010), H. 4}, isbn = {1862-6300}, pages = {930 -- 934}, year = {2010}, language = {en} } @article{JildehKirchnerBaltesetal.2019, author = {Jildeh, Zaid B. and Kirchner, Patrick and Baltes, Klaus and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide - numerical modeling and experimental results}, series = {International Journal of Heat and Mass Transfer}, volume = {143}, journal = {International Journal of Heat and Mass Transfer}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0017-9310}, doi = {10.1016/j.ijheatmasstransfer.2019.118519}, pages = {Article number 118519}, year = {2019}, abstract = {Hydrogen peroxide (H2O2) is a typical surface sterilization agent for packaging materials used in the pharmaceutical, food and beverage industries. We use the finite-elements method to analyze the conceptual design of an in-line thermal evaporation unit to produce a heated gas mixture of air and evaporated H2O2 solution. For the numerical model, the required phase-transition variables of pure H2O2 solution and of the aerosol mixture are acquired from vapor-liquid equilibrium (VLE) diagrams derived from vapor-pressure formulations. This work combines homogeneous single-phase turbulent flow with heat-transfer physics to describe the operation of the evaporation unit. We introduce the apparent heat-capacity concept to approximate the non-isothermal phase-transition process of the H2O2-containing aerosol. Empirical and analytical functions are defined to represent the temperature- and pressure-dependent material properties of the aqueous H2O2 solution, the aerosol and the gas mixture. To validate the numerical model, the simulation results are compared to experimental data on the heating power required to produce the gas mixture. This shows good agreement with the deviations below 10\%. Experimental observations on the formation of deposits due to the evaporation of stabilized H2O2 solution fits the prediction made from simulation results.}, language = {en} } @article{MourzinaSchubertZanderetal.2001, author = {Mourzina, Yu. G. and Schubert, J and Zander, W. and Legin, A. and Vlasov, Y. G. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {251 -- 263}, year = {2001}, language = {en} } @article{IkenAhlbornGerlachetal.2013, author = {Iken, Heiko and Ahlborn, K. and Gerlach, F. and Vonau, W. and Zander, W. and Schubert, J. and Sch{\"o}ning, Michael Josef}, title = {Development of redox glasses and subsequent processing by means of pulsed laser deposition for realizing silicon-based thin-film sensors}, series = {Electrochimica acta}, journal = {Electrochimica acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3859 (E-Journal); 0013-4686 (Print)}, pages = {Available online 30.8.2013}, year = {2013}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution}, series = {Sensors and actuators B: Chemical}, volume = {204}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.08.016}, pages = {659 -- 665}, year = {2014}, abstract = {As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems.}, language = {en} } @article{GuoSekiMiyamotoetal.2014, author = {Guo, Yuanyuan and Seki, Kosuke and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor with a novel photoexcitation method for a higher spatial resolution}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.369}, pages = {456 -- 459}, year = {2014}, abstract = {A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) realized a higher spatial resolution of chemical imaging. In this method, a modulated light probe, which generates the alternating photocurrent signal, is surrounded by a ring of constant light, which suppresses the lateral diffusion of photocarriers by enhancing recombination. A device simulation verified that a higher spatial resolution could be obtained by adjusting the gap between the modulated and constant light. It was also found that a higher intensity and a longer wavelength of constant light was more effective. However, there exists a tradeoff between the spatial resolution and the amplitude of the photocurrent, and thus, the signal-to-noise ratio. A tilted incidence of constant light was applied, which could achieve even higher resolution with a smaller loss of photocurrent.}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2020, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS)}, series = {Physics in Medicine}, volume = {10}, journal = {Physics in Medicine}, number = {100030}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4510}, doi = {10.1016/j.phmed.2020.100030}, pages = {8}, year = {2020}, abstract = {Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO-K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO-K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images.}, language = {en} } @article{DantismTakenagaWagneretal.2017, author = {Dantism, Shahriar and Takenaga, Shoko and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors}, series = {Electrochimica Acta}, volume = {246}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.05.196}, pages = {234 -- 241}, year = {2017}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric sensor with an electrolyte/insulator/semiconductor (EIS) structure, which is able to monitor analyte concentrations of (bio-)chemical species in aqueous solutions in a spatially resolved way. Therefore, it is also an appropriate tool to record 2D-chemical images of concentration variations on the sensor surface. In the present work, two differential, LAPS-based measurement principles are introduced to determine the metabolic activity of Escherichia coli (E. coli) K12 and Chinese hamster ovary (CHO) cells as test microorganisms. Hereby, we focus on i) the determination of the extracellular acidification rate (ΔpH/min) after adding glucose solutions to the cell suspensions; and ii) recording the amplitude increase of the photocurrent (Iph) related to the produced acids from E. coli K12 bacteria and CHO cells on the sensor surface by 2D-chemical imaging. For this purpose, 3D-printed multi-chamber structures were developed and mounted on the planar sensor-chip surface to define four independent compartments, enabling differential measurements with varying cell concentrations. The differential concept allows eliminating unwanted drift effects and, with the four-chamber structures, measurements on the different cell concentrations were performed simultaneously, thus reducing also the overall measuring time.}, language = {en} } @article{MiyamotoYoshidaSakaietal.2011, author = {Miyamoto, Ko-ichiro and Yoshida, Midori and Sakai, Taito and Matsuzaka, Atsushi and Wagner, Torsten and Kanoh, Sanoh and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Differential setup of light-addressable potentiometric sensor with an enzyme reactor in a flow channel}, series = {Japanese Journal of Applied Physics. 50 (2011)}, journal = {Japanese Journal of Applied Physics. 50 (2011)}, publisher = {Japan Society of Applied Physics}, address = {Bristol}, isbn = {0021-4922}, pages = {04DL08-1 -- 04DL08-5}, year = {2011}, language = {en} } @article{ErmolenkoVlasovKolodnikovetal.2004, author = {Ermolenko, Y.E. and Vlasov, Y.G. and Kolodnikov, V.V. and Shabaldkin, D. A. and Kloock, Joachim P. and Sch{\"o}ning, Michael Josef}, title = {Diffusion of radioactive tracers (204Tl, 110mAg) and ionic conductivity in membrane materials for the chemical sensors}, series = {Advances in nuclear and radiochemistry : extended abstracts of papers presented at the Sixth International Conference on Nuclear and Radiochemistry (NRC-6), 29 August to 3 September 2004, Aachen, Germany ; in cooperation with University of Cologne, GDCh, FECS, OECD-NEA and IAEA / Syed M. Qaim ... (eds.).}, journal = {Advances in nuclear and radiochemistry : extended abstracts of papers presented at the Sixth International Conference on Nuclear and Radiochemistry (NRC-6), 29 August to 3 September 2004, Aachen, Germany ; in cooperation with University of Cologne, GDCh, FECS, OECD-NEA and IAEA / Syed M. Qaim ... (eds.).}, publisher = {Forschungszentrum J{\"u}lich, Zentralbibliothek}, address = {J{\"u}lich}, isbn = {3893363629}, pages = {483 -- 485}, year = {2004}, language = {en} } @article{KeusgenKloockKnobbeetal.2004, author = {Keusgen, M. and Kloock, Joachim P. and Knobbe, D.-T. and J{\"u}nger, M. and Krest, I. and Goldbach, M. and Klein, W. and Sch{\"o}ning, Michael Josef}, title = {Direct determination of cyanides by potentiometric biosensors}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {380 -- 385}, year = {2004}, language = {en} } @article{SchoeningKloockKnobbeetal.2004, author = {Sch{\"o}ning, Michael Josef and Kloock, Joachim P. and Knobbe, D.-T. and Krause, R. and Block, K. and Wang, J. and Mulchandani, A. and Keusgen, M.}, title = {Direktnachweis von Pestiziden und Cyanid mit elektrochemischen Enzymsensoren}, series = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI}, address = {D{\"u}sseldorf}, isbn = {3-18-091829-2}, pages = {699 -- 706}, year = {2004}, language = {en} } @article{GamellaZakharchenkoGuzetal.2017, author = {Gamella, Maria and Zakharchenko, Andrey and Guz, Nataliia and Masi, Madeline and Minko, Sergiy and Kolpashchikov, Dmitry M. and Iken, Heiko and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {DNA computing system activated by electrochemically triggered DNA realease from a polymer-brush-modified electrode array}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201600389}, pages = {398 -- 408}, year = {2017}, abstract = {An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA-based Identity, AND and XOR logic gates. Single-stranded DNA molecules were loaded on the mixed poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA)/poly(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAEMA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at -1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals.}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, Sabrina and Wu, Chunsheng and Keusgen, Michael and Mewes, Dieter and Sch{\"o}ning, Michael Josef}, title = {DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer}, series = {Applied Materials \& Interfaces}, volume = {36}, journal = {Applied Materials \& Interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, doi = {10.1021/acsami.5b05146}, pages = {20068 -- 20075}, year = {2015}, abstract = {Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.}, language = {en} } @article{SchoeningWangKrauseetal.2002, author = {Sch{\"o}ning, Michael Josef and Wang, Josepf and Krause, Robin and Block, Kirstin and Musameh, Mustafa and Mulchandani, Ashok and Mulchandani, Priti and Chen, Wilfred}, title = {Dual amperometric-potentiometric biosensor detection system for monitoring organophosphorus neurotoxins}, series = {Analyica Chimica Acta. 469 (2002), H. 2}, journal = {Analyica Chimica Acta. 469 (2002), H. 2}, isbn = {0378-4304}, pages = {197 -- 203}, year = {2002}, language = {en} } @article{SpelthahnSchubertSchoening2012, author = {Spelthahn, Heiko and Schubert, J{\"u}rgen and Sch{\"o}ning, Michael Josef}, title = {D{\"u}nnschichtsensoren f{\"u}r die Schwermetallanalytik}, series = {GIT : Labor-Fachzeitschrift}, volume = {56}, journal = {GIT : Labor-Fachzeitschrift}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0016-3538}, pages = {285 -- 287}, year = {2012}, abstract = {Die Detektion von Schadstoffen repr{\"a}sentiert in der Umweltanalytik eine wichtige Aufgabenstellung. Gerade die Abwasser- bzw. Brauchwasseranalytik sowie die Prozesskontrolle haben einen hohen Stellenwert. Siliziumbasierte D{\"u}nnschichtsensoren bieten eine kosteng{\"u}nstige M{\"o}glichkeit, „online"-Messungen bzw. Vor-Ort-Messungen zeitnah durchzuf{\"u}hren. In dieser Arbeit wird ein potentiometrisches Sensorarray auf der Basis von Chalkogenidgl{\"a}sern zur Detektion von Schwermetallen in w{\"a}ssrigen Medien vorgestellt.}, language = {en} } @article{ArreolaKeusgenSchoening2017, author = {Arreola, Julio and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Effect of O2 plasma on properties of electrolyte-insulator-semiconductor structures}, series = {physica status solidi a : applications and materials sciences}, volume = {214}, journal = {physica status solidi a : applications and materials sciences}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700025}, pages = {Artikel 1700025}, year = {2017}, abstract = {Prior to immobilization of biomolecules or cells onto biosensor surfaces, the surface must be physically or chemically activated for further functionalization. Organosilanes are a versatile option as they facilitate the immobilization through their terminal groups and also display self-assembly. Incorporating hydroxyl groups is one of the important methods for primary immobilization. This can be done, for example, with oxygen plasma treatment. However, this treatment can affect the performance of the biosensors and this effect is not quite well understood for surface functionalization. In this work, the effect of O2 plasma treatment on EIS sensors was investigated by means of electrochemical characterizations: capacitance-voltage (C-V) and constant capacitance (ConCap) measurements. After O2 plasma treatment, the potential of the EIS sensor dramatically shifts to a more negative value. This was successfully reset by using an annealing process.}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2019, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS)}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {20}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900259}, pages = {8 Seiten}, year = {2019}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment.}, language = {en} } @article{PoghossianWeilCherstvyetal.2013, author = {Poghossian, Arshak and Weil, M. and Cherstvy, A. G. and Sch{\"o}ning, Michael Josef}, title = {Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices}, series = {Analytical and bioanalytical chemistry}, volume = {405}, journal = {Analytical and bioanalytical chemistry}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1432-1130 ; 1618-2642}, doi = {10.1007/s00216-013-6951-9}, pages = {6425 -- 6436}, year = {2013}, abstract = {The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance-voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed.}, language = {en} } @article{WeldenSchejaSchoeningetal.2018, author = {Welden, Rene and Scheja, Sabrina and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Wagner, Torsten}, title = {Electrochemical Evaluation of Light-Addressable Electrodes Based on TiO2 for the Integration in Lab-on-Chip Systems}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800150}, pages = {Article number 1800150}, year = {2018}, abstract = {In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol-gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated.}, language = {en} } @article{SchoeningGlueckThust1999, author = {Sch{\"o}ning, Michael Josef and Gl{\"u}ck, O. and Thust, M.}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {The measurement, instrumentation, and sensors handbook / ed.-in-chief John G. Webster. In cooperation with IEEE Press}, journal = {The measurement, instrumentation, and sensors handbook / ed.-in-chief John G. Webster. In cooperation with IEEE Press}, publisher = {CRC Press}, address = {Boca Raton [u.a.]}, isbn = {0-8493-8347-1}, pages = {1 -- 49}, year = {1999}, language = {en} } @article{BaeckerDellePoghossianetal.2011, author = {B{\"a}cker, Matthias and Delle, L. and Poghossian, Arshak and Biselli, Manfred and Zang, Werner and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Electrochemical sensor array for bioprocess monitoring}, series = {Electrochimica Acta (2011)}, volume = {56}, journal = {Electrochimica Acta (2011)}, number = {26}, publisher = {Elsevier}, address = {Amsterdam}, pages = {9673 -- 9678}, year = {2011}, language = {en} } @article{HonarvarfardGamellaChannaveerappaetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Channaveerappa, Devika and Darie, Costel C. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Electrochemically Stimulated Insulin Release from a Modified Graphene-functionalized Carbon Fiber Electrode}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700095}, pages = {1543 -- 1553}, year = {2017}, abstract = {A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9-10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of -1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species.}, language = {en} } @article{MorenoiCodinachsKloockSchoeningetal.2008, author = {Moreno i Codinachs, Lia and Kloock, Joachim P. and Sch{\"o}ning, Michael Josef and Baldi, Antoni and Ipatov, Andrey and Bratov, Andrey and Jimenez-Jorquera, Cecilia}, title = {Electronic integrated multisensor tongue applied to grape juice and wine analysis}, series = {Analyst. 133 (2008)}, journal = {Analyst. 133 (2008)}, isbn = {1364-5528}, pages = {1440 -- 1448}, year = {2008}, language = {en} } @article{MuribGrinsvenGrietenetal.2013, author = {Murib, M. S. and Grinsven, B. van and Grieten, L. and Janssens, S. D. and Vermeeren, V. and Eersels, K. and Broeders, J. and Ameloot, M. and Michiels, L. and Ceuninck, W. De and Haenen, K. and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Electronic monitoring of chemical DNA denaturation on nanocrystalline diamond electrodes with different molarities and flow rates}, series = {Physica Status Solidi (A). Vol. 210 (2013), iss. 5}, journal = {Physica Status Solidi (A). Vol. 210 (2013), iss. 5}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {0031-8965}, pages = {911 -- 917}, year = {2013}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, S. and Wu, Chunsheng and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Electrostatic Detection of Unlabelled Single- and Double-stranded DNA Using Capacitive Field-effect Devices Functionalized with a Positively Charged Polyelectrolyte Layer}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.710}, pages = {544 -- 547}, year = {2015}, abstract = {Capacitive field-effect electrolyte-insulator-semiconductor sensors consisting of an Al-p-Si-SiO2 structure have been used for the electrical detection of unlabelled single- and double-stranded DNA (dsDNA) molecules by their intrinsic charge. A simple functionalization protocol based on the layer-by-layer (LbL) technique was used to prepare a weak polyelectrolyte/probe-DNA bilayer, followed by the hybridization with complementary target DNA molecules. Due to the flat orientation of the LbL-adsorbed DNA molecules, a high sensor signal has been achieved. In addition, direct label-free detection of in-solution hybridized dsDNA molecules has been studied.}, language = {en} } @article{WagnerDollSchoening2014, author = {Wagner, Patrick and Doll, Theodor and Sch{\"o}ning, Michael Josef}, title = {Engineering of functional interfaces / Patrick Wagner ; Theodor Doll ; Michael J. Sch{\"o}ning (eds.)}, series = {Physica status solidi (A) : Applications and materials science}, volume = {211}, journal = {Physica status solidi (A) : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Book); 1862-6319 (E-Book); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201470241}, pages = {1339 -- 1339}, year = {2014}, language = {en} } @article{DollWagnerWagneretal.2016, author = {Doll, Theodor and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Engineering of functional interfaces / Theodor Doll ; Torsten Wagner ; Patrick Wagner ; Michael J. Sch{\"o}ning (eds.)}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201670641}, pages = {1393 -- 1394}, year = {2016}, language = {en} } @article{MiyamotoSekiWagneretal.2014, author = {Miyamoto, K. and Seki, K. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.563}, pages = {612 -- 615}, year = {2014}, abstract = {The chemical imaging sensor, which is based on the principle of the light-addressable potentiometric sensor (LAPS), is a powerful tool to visualize the spatial distribution of chemical species on the sensor surface. The spatial resolution of this sensor depends on the diffusion of photocarriers excited by a modulated light. In this study, a novel hybrid fiber-optic illumination was developed to enhance the spatial resolution. It consists of a modulated light probe to generate a photocurrent signal and a ring of constant light, which suppresses the lateral diffusion of minority carriers excited by the modulated light. It is demonstrated that the spatial resolution was improved from 92 μm to 68 μm.}, language = {en} } @article{SchusserBaeckerKrischeretal.2014, author = {Schusser, Sebastian and B{\"a}cker, Matthias and Krischer, M. and Wenzel, L. and Leinhos, Marcel and Poghossian, Arshak and Biselli, Manfred and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Enzymatically catalyzed degradation of biodegradable polymers investigated by means of a semiconductor-based field-effect sensor}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.689}, pages = {1314 -- 1317}, year = {2014}, abstract = {A semiconductor field-effect device has been used for an enzymatically catalyzed degradation of biopolymers for the first time. This novel technique is capable to monitor the degradation process of multiple samples in situ and in real-time. As model system, the degradation of the biopolymer poly(D, L-lactic acid) has been monitored in the degradation medium containing the enzyme lipase from Rhizomucor miehei. The obtained results demonstrate the potential of capacitive field-effect sensors for degradation studies of biodegradable polymers.}, language = {en} } @article{ThustSchoeningSchrothetal.1999, author = {Thust, M. and Sch{\"o}ning, Michael Josef and Schroth, P. and Malkoc, {\"U}. and Dicker, C. I. and Steffen, A. and Kordos, P. and L{\"u}th, H.}, title = {Enzyme immobilisation on planar and porous silicon substrates for biosensor applications}, series = {Journal of Molecular Catalysis B: Enzymatic. 7 (1999), H. 1-4}, journal = {Journal of Molecular Catalysis B: Enzymatic. 7 (1999), H. 1-4}, isbn = {1381-1177}, pages = {77 -- 83}, year = {1999}, language = {en} } @article{PoghossianKatzSchoening2015, author = {Poghossian, Arshak and Katz, Evgeny and Sch{\"o}ning, Michael Josef}, title = {Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane}, series = {Chemical Communications}, volume = {51}, journal = {Chemical Communications}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, doi = {10.1039/C5CC01362C}, pages = {6564 -- 6567}, year = {2015}, abstract = {Capacitive field-effect sensors modified with a multi-enzyme membrane have been applied for an electronic transduction of biochemical signals processed by enzyme-based AND-Reset and OR-Reset logic gates. The local pH change at the sensor surface induced by the enzymatic reaction was used for the activation of the Reset function for the first time.}, language = {en} } @article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} } @article{TurekKeusgenPoghossianetal.2008, author = {Turek, M. and Keusgen, M. and Poghossian, Arshak and Mulchandani, A. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {Enzyme-modified electrolyte-insulator-semiconductor sensors}, series = {Journal of Contemporary Physics. 43 (2008), H. 2}, journal = {Journal of Contemporary Physics. 43 (2008), H. 2}, isbn = {1934-9378}, pages = {82 -- 85}, year = {2008}, language = {en} } @article{BandodkarMolinnusMirzaetal.2014, author = {Bandodkar, Amay J. and Molinnus, Denise and Mirza, Omar and Guinovart, Tomas and Windmiller, Joshua R. and Valdes-Ramirez, Gabriela and Andrade, Francisco J. and Sch{\"o}ning, Michael Josef and Wang, Joseph}, title = {Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring}, series = {Biosensors and bioelectronics}, volume = {54}, journal = {Biosensors and bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4235 (E-Journal); 0956-5663 (Print)}, doi = {10.1016/j.bios.2013.11.039}, pages = {603 -- 609}, year = {2014}, abstract = {This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains.}, language = {en} } @article{BohrnStuetzFleischeretal.2011, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Eukaryotic cell lines as a sensitive layer for direct monitoring of carbon monoxide}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1345 -- 1350}, year = {2011}, language = {en} } @article{SchoeningSimonisKringsetal.2002, author = {Sch{\"o}ning, Michael Josef and Simonis, A. and Krings, T. and L{\"u}th, H. and Wang, J.}, title = {Evaluation of a chip-based thin-film / thick-film sensor hybrid for (bio-)chemical analysis}, series = {Electroanalysis}, volume = {14}, journal = {Electroanalysis}, number = {13}, issn = {1040-0397}, pages = {955 -- 958}, year = {2002}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations}, series = {physica status solidi (a): applications and materials science}, volume = {215}, journal = {physica status solidi (a): applications and materials science}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700920}, pages = {Artikel 1700920}, year = {2018}, abstract = {In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques.}, language = {en} }