@article{SavitskayaKistaubayevaDigeletal.2017, author = {Savitskaya, I. S. and Kistaubayeva, A. S. and Digel, Ilya and Shokatayeva, D. H.}, title = {Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials}, series = {Eurasian Chemico-Technological Journal}, volume = {19}, journal = {Eurasian Chemico-Technological Journal}, number = {3}, issn = {2522-4867}, doi = {10.18321/ectj670}, pages = {255 -- 264}, year = {2017}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @article{ValeroBung2017, author = {Valero, Daniel and Bung, Daniel Bernhard}, title = {Artificial Neural Networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe}, series = {Journal of Hydro-environment Research}, volume = {19}, journal = {Journal of Hydro-environment Research}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2017.08.004}, pages = {150 -- 159}, year = {2017}, language = {en} } @article{KleinButenwegKlinkel2017, author = {Klein, Michel and Butenweg, Christoph and Klinkel, Sven}, title = {The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines}, series = {Procedia Engineering}, volume = {199}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2017.09.325}, pages = {3218 -- 3223}, year = {2017}, language = {en} } @article{KarnatakKantzBialonski2017, author = {Karnatak, Rajat and Kantz, Holger and Bialonski, Stephan}, title = {Early warning signal for interior crises in excitable systems}, series = {Physical Review E}, volume = {96}, journal = {Physical Review E}, number = {4}, issn = {2470-0053}, doi = {10.1103/PhysRevE.96.042211}, pages = {042211}, year = {2017}, language = {en} } @inproceedings{SchlemmerPorstBassametal.2017, author = {Schlemmer, Katharina and Porst, Dariusz and Bassam, Rasha and Artmann, Gerhard and Digel, Ilya}, title = {Effects of nitric oxide (NO) and ATP on red blood cell phenotype and deformability}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {100 -- 101}, year = {2017}, language = {en} } @inproceedings{Dachwald2017, author = {Dachwald, Bernd}, title = {Radiation pressure force model for an ideal laser-enhanced solar sail}, series = {4th International Symposium on Solar Sailing}, booktitle = {4th International Symposium on Solar Sailing}, pages = {1 -- 5}, year = {2017}, abstract = {The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a "traditional" solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail's propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible.}, language = {en} } @misc{HacklWegmannKahmannetal.2017, author = {Hackl, Michael and Wegmann, Kilian and Kahmann, Stephanie Lucina and Heinze, Nicolai and Staat, Manfred and Neiss, Wolfram F. and Scaal, Martin and M{\"u}ller, Lars P.}, title = {Reply to the letter to the editor: shortening osteotomy of the proximal radius}, series = {Knee Surgery, Sports Traumatology, Arthroscopy}, volume = {25}, journal = {Knee Surgery, Sports Traumatology, Arthroscopy}, number = {10}, doi = {10.1007/s00167-017-4666-8}, pages = {3328 -- 3329}, year = {2017}, language = {en} } @article{HacklAndermahrStaatetal.2017, author = {Hackl, M. and Andermahr, J. and Staat, Manfred and Bremer, I. and Borggrefe, J. and Prescher, A. and M{\"u}ller, L. P. and Wegmann, K.}, title = {Suture button reconstruction of the central band of the interosseous membrane in Essex-Lopresti lesions: a comparative biomechanical investigation}, series = {The Journal of Hand Surgery (European Volume)}, volume = {42}, journal = {The Journal of Hand Surgery (European Volume)}, number = {4}, publisher = {Sage}, address = {London}, issn = {2043-6289 (Online)}, doi = {10.1177/1753193416665943}, pages = {370 -- 376}, year = {2017}, language = {en} } @inproceedings{StopforthDavrajhFerrein2017, author = {Stopforth, Riaan and Davrajh, Shaniel and Ferrein, Alexander}, title = {Design considerations of the duo fugam dual rotor UAV}, series = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, booktitle = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, isbn = {978-1-5386-2314-5}, doi = {10.1109/RoboMech.2017.8261115}, pages = {7 -- 13}, year = {2017}, language = {en} } @inproceedings{NiemuellerNeumannHenkeetal.2017, author = {Niemueller, Tim and Neumann, Tobias and Henke, Christoph and Sch{\"o}nitz, Sebastian and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Improvements for a robust production in the RoboCup logistics league 2016}, series = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, booktitle = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-68792-6}, doi = {10.1007/978-3-319-68792-6_49}, pages = {589 -- 600}, year = {2017}, language = {en} } @article{LopesLeandroCarvalhoetal.2017, author = {Lopes, Pedro and Leandro, Jorge and Carvalho, Rita F. and Bung, Daniel Bernhard}, title = {Alternating skimming flow over a stepped spillway}, series = {Environmental Fluid Mechanics}, volume = {17}, journal = {Environmental Fluid Mechanics}, number = {2}, publisher = {Springer}, address = {Berlin}, issn = {1573-1510}, doi = {10.1007/s10652-016-9484-x}, pages = {303 -- 322}, year = {2017}, language = {en} } @article{DammSauerbornFendetal.2017, author = {Damm, Marc Andr{\´e} and Sauerborn, Markus and Fend, Thomas and Herrmann, Ulf}, title = {Optimisation of a urea selective catalytic reduction system with a coated ceramic mixing element}, series = {Journal of ceramic science and technology}, volume = {8}, journal = {Journal of ceramic science and technology}, number = {1}, publisher = {G{\"o}ller}, address = {Baden-Baden}, isbn = {2190-9385 (Print)}, issn = {2190-9385 (Online)}, doi = {10.4416/JCST2016-00056}, pages = {19 -- 24}, year = {2017}, language = {en} } @article{PoghossianWernerBuniatyanetal.2017, author = {Poghossian, Arshak and Werner, Frederik and Buniatyan, V. V. and Wagner, Torsten and Miamoto, K. and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk}, series = {Sensor and Actuators B: Chemical}, journal = {Sensor and Actuators B: Chemical}, number = {244}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.01.047}, pages = {1071 -- 1079}, year = {2017}, abstract = {The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems.}, language = {en} } @inproceedings{AbelPerezVianaCiritsisetal.2017, author = {Abel, Alexander and P{\´e}rez-Viana, Daniel and Ciritsis, Bernard and Staat, Manfred}, title = {Prevention of femur neck fractures through femoroplasty}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {114 -- 115}, year = {2017}, language = {en} } @article{BaeckerKochEibenetal.2017, author = {B{\"a}cker, Matthias and Koch, Claudia and Eiben, Sabine and Geiger, Fania and Eber, Fabian and Gliemann, Hartmut and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors}, series = {Sensors and Actuators B: Chemical}, volume = {238}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.07.096}, pages = {716 -- 722}, year = {2017}, abstract = {The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips.}, language = {en} } @inproceedings{MolinnusHardtKaeveretal.2017, author = {Molinnus, Denise and Hardt, Gabriel and K{\"a}ver, Larissa and Willenberg, Holger S. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Bioelectrocatalytical System to Support Tumor Diagnostic Technology}, series = {MDPI Proceedings}, booktitle = {MDPI Proceedings}, doi = {10.3390/proceedings1040506}, pages = {4 Seiten}, year = {2017}, language = {en} } @article{HonarvarfardGamellaChannaveerappaetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Channaveerappa, Devika and Darie, Costel C. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Electrochemically Stimulated Insulin Release from a Modified Graphene-functionalized Carbon Fiber Electrode}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700095}, pages = {1543 -- 1553}, year = {2017}, abstract = {A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9-10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of -1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species.}, language = {en} } @inproceedings{KuhlenDigel2017, author = {Kuhlen, Max and Digel, Ilya}, title = {Fluorescence signatures and detection limits of ubiquitous terrestrial bio-compounds}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {102 -- 103}, year = {2017}, language = {en} } @article{SchoeningBronderWuetal.2017, author = {Sch{\"o}ning, Michael Josef and Bronder, Thomas and Wu, Chunsheng and Scheja, Sabrina and Jessing, Max and Metzger-Boddien, Christoph and Keusgen, Michael and Poghossian, Arshak}, title = {Label-Free DNA Detection with Capacitive Field-Effect Devices—Challenges and Opportunities}, series = {Proceedings}, volume = {1}, journal = {Proceedings}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2504-3900}, doi = {10.3390/proceedings1080719}, pages = {Artikel 719}, year = {2017}, abstract = {Field-effect EIS (electrolyte-insulator-semiconductor) sensors modified with a positively charged weak polyelectrolyte layer have been applied for the electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge. The EIS sensors are able to detect the existence of target DNA amplicons in PCR (polymerase chain reaction) samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Due to their miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge, those sensors can serve as possible platform for the development of label-free DNA chips. Possible application fields as well as challenges and limitations will be discussed.}, language = {en} } @inproceedings{NiemuellerNeumannHenkeetal.2017, author = {Niemueller, Tim and Neumann, Tobias and Henke, Christoph and Sch{\"o}nitz, Sebastian and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {International Harting Open Source Award 2016: Fawkes for the RoboCup Logistics League}, series = {RoboCup 2016: RoboCup 2016: Robot World Cup XX. RoboCup 2016}, booktitle = {RoboCup 2016: RoboCup 2016: Robot World Cup XX. RoboCup 2016}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-68792-6}, doi = {10.1007/978-3-319-68792-6_53}, pages = {634 -- 642}, year = {2017}, language = {en} } @article{BronderPoghossianKeusgenetal.2017, author = {Bronder, Thomas and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors}, series = {tm - Technisches Messen}, volume = {84}, journal = {tm - Technisches Messen}, number = {10}, publisher = {De Gruyter}, address = {Oldenbourg}, doi = {10.1515/teme-2017-0015}, pages = {628 -- 634}, year = {2017}, abstract = {In this study, polyelectrolyte-modified field-effect-based electrolyte-insulator-semiconductor (EIS) devices have been used for the label-free electrical detection of double-stranded deoxyribonucleic acid (dsDNA)molecules. The sensor-chip functionalization with a positively charged polyelectrolyte layer provides the possibility of direct adsorptive binding of negatively charged target DNA oligonucleotides onto theSiO2-chip surface.EIS sensors can be utilized as a tool to detect surface-charge changes; the electrostatic adsorption of oligonucleotides onto the polyelectrolyte layer leads to a measureable surface-potential change. Signals of 39mV have been recorded after the incubation with the oligonucleotide solution. Besides the electrochemical experiments, the successful adsorption of dsDNA onto the polyelectrolyte layer has been verified via fluorescence microscopy. The presented results demonstrate that the signal recording of EISchips, which are modified with a polyelectrolyte layer, canbe used as a favorable approach for a fast, cheap and simple detection method for dsDNA.}, language = {en} } @incollection{NiemuellerZwillingLakemeyeretal.2017, author = {Niemueller, Tim and Zwilling, Frederik and Lakemeyer, Gerhard and L{\"o}bach, Matthias and Reuter, Sebastian and Jeschke, Sabina and Ferrein, Alexander}, title = {Cyber-Physical System Intelligence}, series = {Industrial Internet of Things}, booktitle = {Industrial Internet of Things}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42559-7}, doi = {10.1007/978-3-319-42559-7_17}, pages = {447 -- 472}, year = {2017}, abstract = {Cyber-physical systems are ever more common in manufacturing industries. Increasing their autonomy has been declared an explicit goal, for example, as part of the Industry 4.0 vision. To achieve this system intelligence, principled and software-driven methods are required to analyze sensing data, make goal-directed decisions, and eventually execute and monitor chosen tasks. In this chapter, we present a number of knowledge-based approaches to these problems and case studies with in-depth evaluation results of several different implementations for groups of autonomous mobile robots performing in-house logistics in a smart factory. We focus on knowledge-based systems because besides providing expressive languages and capable reasoning techniques, they also allow for explaining how a particular sequence of actions came about, for example, in the case of a failure.}, language = {en} } @incollection{DuongNguyenStaat2017, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Physical response of hyperelastic models for composite materials and soft tissues}, series = {Advances in Composite Material}, booktitle = {Advances in Composite Material}, publisher = {Scientific Research Publishing}, address = {Wuhan}, isbn = {978-1-61896-300-0 (Hardcover), 978-1-61896-299-7 (Paperback)}, pages = {316}, year = {2017}, language = {en} } @article{HonarvarfardGamellaPoghossianetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer}, series = {Applied Materials Today}, volume = {9}, journal = {Applied Materials Today}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-9407}, doi = {10.1016/j.apmt.2017.08.003}, pages = {266 -- 270}, year = {2017}, abstract = {An enzyme-based biocatalytic system mimicking operation of a logically reversible Controlled NOT (CNOT) gate has been interfaced with semiconductor electronic transducers. Electrolyte-insulator-semiconductor (EIS) structures have been used to transduce chemical changes produced by the enzyme system to an electronically readable capacitive output signal using field-effect features of the EIS device. Two enzymes, urease and esterase, were immobilized on the insulating interface of EIS structure producing local pH changes performing XOR logic operation controlled by various combinations of the input signals represented by urea and ethyl butyrate. Another EIS transducer was functionalized with esterase only, thus performing Identity (ID) logic operation for the ethyl butyrate input. Both semiconductor devices assembled in parallel operated as a logically reversible CNOT gate. The present system, despite its simplicity, demonstrated for the first time logically reversible function of the enzyme system transduced electronically with the semiconductor devices. The biomolecular realization of a CNOT gate interfaced with semiconductors is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @incollection{SteuerDankertBouffierGaedickeetal.2017, author = {Steuer-Dankert, Linda and Bouffier, Anna and Gaedicke, Sonja and Leicht-Scholten, Carmen}, title = {Diversifying engineering education: a transdisciplinary approach from RWTH Aachen University}, series = {Strategies for increasing diversity in engineering majors and careers}, booktitle = {Strategies for increasing diversity in engineering majors and careers}, publisher = {IGI Global}, address = {Hershey, USA}, isbn = {9781522522126}, doi = {10.4018/978-1-5225-2212-6.ch010}, pages = {201 -- 235}, year = {2017}, abstract = {Engineers and therefore engineering education are challenged by the increasing complexity of questions to be answered globally. The education of future engineers therefore has to answer with curriculums that build up relevant skills. This chapter will give an example how to bring engineering and social responsibility successful together to build engineers of tomorrow. Through the integration of gender and diversity perspectives, engineering research and teaching is expanded with new perspectives and contents providing an important potential for innovation. Aiming on the enhancement of engineering education with distinctive competencies beyond technical expertise, the teaching approach introduced in the chapter represents key factors to ensure that coming generations of engineers will be able to meet the requirements and challenges a changing globalized world holds for them. The chapter will describe how this approach successfully has been implemented in the curriculum in engineering of a leading technical university in Germany.}, language = {en} } @inproceedings{SchoppHeuermannMarso2017, author = {Schopp, Christoph and Heuermann, Holger and Marso, Michel}, title = {Multiphysical Study of an Atmospheric Microwave Argon Plasma Jet}, series = {IEEE Transactions on Plasma Science}, volume = {45}, booktitle = {IEEE Transactions on Plasma Science}, number = {6}, publisher = {IEEE}, issn = {1939-9375}, doi = {10.1109/TPS.2017.2692735}, pages = {932 -- 937}, year = {2017}, language = {en} } @article{GamellaZakharchenkoGuzetal.2017, author = {Gamella, Maria and Zakharchenko, Andrey and Guz, Nataliia and Masi, Madeline and Minko, Sergiy and Kolpashchikov, Dmitry M. and Iken, Heiko and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {DNA computing system activated by electrochemically triggered DNA realease from a polymer-brush-modified electrode array}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201600389}, pages = {398 -- 408}, year = {2017}, abstract = {An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA-based Identity, AND and XOR logic gates. Single-stranded DNA molecules were loaded on the mixed poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA)/poly(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAEMA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at -1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals.}, language = {en} } @article{MolinnusPoghossianKeusgenetal.2017, author = {Molinnus, Denise and Poghossian, Arshak and Keusgen, Michael and Katz, Evgeny and Sch{\"o}ning, Michael Josef}, title = {Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {8}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700208}, pages = {1840 -- 1849}, year = {2017}, abstract = {The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug-release, and closed-loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field-effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field-effect electrolyte-insulator-semiconductor sensor modified with a multi-enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed-loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor.}, language = {en} } @incollection{HerrmannKearneyRoegeretal.2017, author = {Herrmann, Ulf and Kearney, D. and R{\"o}ger, M. and Prahl, C.}, title = {System performance measurements}, series = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, booktitle = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, publisher = {Woodhead Publishing}, address = {Duxford}, isbn = {978-0-08-100448-7}, doi = {https://doi.org/10.1016/B978-0-08-100447-0.00005-5}, pages = {115 -- 165}, year = {2017}, abstract = {This chapter introduces performance and acceptance testing and describes state-of-the-art tools, methods, and instruments to assess the plant performance or realize plant acceptance testing. The status of the development of standards for performance assessment is given.}, language = {en} } @inproceedings{JabbariBhattaraiAndingetal.2017, author = {Jabbari, Medisa and Bhattarai, Aroj and Anding, Ralf and Staat, Manfred}, title = {Biomechanical simulation of different prosthetic meshes for repairing uterine/vaginal vault prolapse}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {118 -- 119}, year = {2017}, language = {en} } @inproceedings{SuryoputriGhaderiLinderetal.2017, author = {Suryoputri, Nathania and Ghaderi, Aydin and Linder, Peter and Kotliar, Konstantin and G{\"o}ttler, Jens and Sorg, Christian and Grimmer, Timo}, title = {Does hemodynamic response function change in Alzheimer disease?}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {92}, year = {2017}, language = {en} } @inproceedings{ThurnBalcGebhardtetal.2017, author = {Thurn, Laura and Balc, Nicolae and Gebhardt, Andreas and Kessler, Julia}, title = {Education packed in technology to promote innovations: Teaching Additive Manufacturing based on a rolling Lab}, series = {Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)}, booktitle = {Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)}, issn = {2261-236X}, doi = {10.1051/matecconf/201713702013}, pages = {6 Seiten}, year = {2017}, language = {en} } @inproceedings{JablonskiKochBronderetal.2017, author = {Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier}, series = {MDPI Proceeding}, volume = {1}, booktitle = {MDPI Proceeding}, number = {4}, doi = {10.3390/proceedings1040505}, pages = {4}, year = {2017}, language = {en} } @inproceedings{SchleupenEngemannBagherietal.2017, author = {Schleupen, Josef and Engemann, Heiko and Bagheri, Mohsen and Kallweit, Stephan and Dahmann, Peter}, title = {Developing a climbing maintenance robot for tower and rotor blade service of wind turbines}, series = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, booktitle = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-49058-8}, doi = {10.1007/978-3-319-49058-8_34}, pages = {310 -- 319}, year = {2017}, language = {en} } @incollection{PoghossianSchoening2017, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Nanomaterial-Modified Capacitive Field-Effect Biosensors}, series = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, booktitle = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, publisher = {Springer}, address = {Berlin, Heidelberg}, doi = {10.1007/5346_2017_2}, pages = {1 -- 25}, year = {2017}, abstract = {The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte-insulator-semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing.}, language = {en} } @inproceedings{SchneiderAlHakimKayseretal.2017, author = {Schneider, Oliver and Al Hakim, Taher and Kayser, Peter and Digel, Ilya}, title = {Development and trials of a test chamber for ultrasound-assisted sampling of living cells from solid surfaces}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {96 -- 97}, year = {2017}, language = {en} } @article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} } @inproceedings{MarcoFerrein2017, author = {Marco, Heather G. and Ferrein, Alexander}, title = {AGNES: The African-German Network of Excellence in Science}, series = {Proceedings of the 2nd Developing World Robotics Forum, Workshop at IEEE AFRICON 2017}, booktitle = {Proceedings of the 2nd Developing World Robotics Forum, Workshop at IEEE AFRICON 2017}, pages = {1 -- 2}, year = {2017}, language = {en} } @inproceedings{CarzanaDachwaldNoomen2017, author = {Carzana, Livio and Dachwald, Bernd and Noomen, Ron}, title = {Model and trajectory optimization for an ideal laser-enhanced solar sail}, series = {68th International Astronautical Congress}, booktitle = {68th International Astronautical Congress}, year = {2017}, abstract = {A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term "ideal" means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to "traditional" solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step}, language = {en} } @inproceedings{SchildtBraunMarcocca2017, author = {Schildt, P. and Braun, Carsten and Marcocca, P.}, title = {Flight testing the extra 330LE flying testbed}, series = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, booktitle = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, isbn = {978-151085387-4}, pages = {349 -- 362}, year = {2017}, language = {en} }