@article{WernerWagnerYoshinobuetal.2013, author = {Werner, Frederik and Wagner, Torsten and Yoshinobu, Tatsuo and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Frequency behaviour of light-addressable potentiometric sensors}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X ; 0031-8965}, doi = {10.1002/pssa.201200929}, pages = {884 -- 891}, year = {2013}, abstract = {Light-addressable potentiometric sensors (LAPS) are semiconductor-based potentiometric sensors, with the advantage to detect the concentration of a chemical species in a liquid solution above the sensor surface in a spatially resolved manner. The addressing is achieved by a modulated and focused light source illuminating the semiconductor and generating a concentration-depending photocurrent. This work introduces a LAPS set-up that is able to monitor the electrical impedance in addition to the photocurrent. The impedance spectra of a LAPS structure, with and without illumination, as well as the frequency behaviour of the LAPS measurement are investigated. The measurements are supported by electrical equivalent circuits to explain the impedance and the LAPS-frequency behaviour. The work investigates the influence of different parameters on the frequency behaviour of the LAPS. Furthermore, the phase shift of the photocurrent, the influence of the surface potential as well as the changes of the sensor impedance will be discussed.}, language = {en} } @article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} } @article{WagnerVornholtWerneretal.2016, author = {Wagner, Torsten and Vornholt, Wolfgang and Werner, Frederik and Yoshinobu, Tatsuo and Miyamoto, Ko-Ichiro and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening}, series = {Physics in medicine}, volume = {2016}, journal = {Physics in medicine}, number = {1}, issn = {2352-4510}, doi = {10.1016/j.phmed.2016.03.001}, pages = {2 -- 7}, year = {2016}, abstract = {The light-addressable potentiometric sensor (LAPS) has the unique feature to address different regions of a sensor surface without the need of complex structures. Measurements at different locations on the sensor surface can be performed in a common analyte solution, which distinctly simplifies the fluidic set-up. However, the measurement in a single analyte chamber prevents the application of different drugs or different concentrations of a drug to each measurement spot at the same time as in the case of multi-reservoir-based set-ups. In this work, the authors designed a LAPS-based set-up for cell culture screening that utilises magnetic beads loaded with the endotoxin (lipopolysaccharides, LPS), to generate a spatially distributed gradient of analyte concentration. Different external magnetic fields can be adjusted to move the magnetic beads loaded with a specific drug within the measurement cell. By recording the metabolic activities of a cell layer cultured on top of the LAPS surface, this work shows the possibility to apply different concentrations of a sample along the LAPS measurement spots within a common analyte solution.}, language = {en} } @article{TurekSchoeningKloocketal.2008, author = {Turek, Monika and Sch{\"o}ning, Michael Josef and Kloock, Joachim P. and Schubert, J{\"u}rgen and Zander, Willi and Kr{\"u}ger, Peter and Keusgen, Michael}, title = {Herstellung und Charakterisierung eines hybriden Sensorarrays auf Halbleiterbasis f{\"u}r die Umweltanalytik}, series = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092011-5}, pages = {803 -- 810}, year = {2008}, language = {de} } @article{TurekKettererClassenetal.2007, author = {Turek, Monika and Ketterer, Lothar and Claßen, Melanie and Berndt, Heinz and Elbers, Gereon and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and Electrochemical Investigations of an EIS-(Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection}, series = {Sensors}, volume = {7}, journal = {Sensors}, number = {8}, isbn = {1424-8220}, pages = {1415 -- 1426}, year = {2007}, language = {en} } @article{TurekHeidenGuoetal.2010, author = {Turek, Monik and Heiden, Wolfgang and Guo, Sharon and Riesen, Alfred and Schubert, J{\"u}rgen and Zander, Willi and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Simultaneous detection of cyanide and heavy metals for environmental analysis by means of µISEs}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {817 -- 823}, year = {2010}, language = {en} } @article{SchoeningKirchnerNgetal.2010, author = {Sch{\"o}ning, Michael Josef and Kirchner, Patrick and Ng, Yue Ann and Spelthahn, Heiko and Schneider, Andreas and Henkel, Hartmut and Friedrich, Peter and Kolstad, Jens and Berger, J{\"o}rg and Keusgen, Michael}, title = {Gas sensor investigation based on a catalytically activated thin-film thermopile for H2O2 detection}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {787 -- 792}, year = {2010}, language = {en} } @article{SchoeningBronderWuetal.2017, author = {Sch{\"o}ning, Michael Josef and Bronder, Thomas and Wu, Chunsheng and Scheja, Sabrina and Jessing, Max and Metzger-Boddien, Christoph and Keusgen, Michael and Poghossian, Arshak}, title = {Label-Free DNA Detection with Capacitive Field-Effect Devices—Challenges and Opportunities}, series = {Proceedings}, volume = {1}, journal = {Proceedings}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2504-3900}, doi = {10.3390/proceedings1080719}, pages = {Artikel 719}, year = {2017}, abstract = {Field-effect EIS (electrolyte-insulator-semiconductor) sensors modified with a positively charged weak polyelectrolyte layer have been applied for the electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge. The EIS sensors are able to detect the existence of target DNA amplicons in PCR (polymerase chain reaction) samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Due to their miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge, those sensors can serve as possible platform for the development of label-free DNA chips. Possible application fields as well as challenges and limitations will be discussed.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{PilasYaziciSelmeretal.2017, author = {Pilas, Johanna and Yazici, Yasemen and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate}, series = {Electrochimica Acta}, volume = {251}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.07.119}, pages = {256 -- 262}, year = {2017}, abstract = {The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4\% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided.}, language = {en} } @article{PilasSelmerKeusgenetal.2019, author = {Pilas, Johanna and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array}, series = {Analytical Chemistry}, volume = {91}, journal = {Analytical Chemistry}, number = {23}, publisher = {ACS Publications}, address = {Washington}, doi = {10.1021/acs.analchem.9b04481}, pages = {15293 -- 15299}, year = {2019}, language = {en} } @article{PilasIkenSelmeretal.2015, author = {Pilas, Johanna and Iken, Heiko and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431894}, pages = {1306 -- 1312}, year = {2015}, abstract = {An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage.}, language = {en} } @article{OberlaenderMayerGreeffetal.2018, author = {Oberl{\"a}nder, Jan and Mayer, Marlena and Greeff, Anton and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes}, series = {Biosensors and Bioelectronics}, volume = {104}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2017.12.045}, pages = {87 -- 94}, year = {2018}, abstract = {In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization.}, language = {en} } @article{OberlaenderKirchnerKeusgenetal.2015, author = {Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.06.126}, pages = {130 -- 136}, year = {2015}, abstract = {The sterilization of packages in aseptic food processes is highly significant to maintain a consumer-safe product with extended shelf-life. Today, the sterilization of food packages is predominantly accomplished by gaseous hydrogen peroxide (H2O2) in combination with heat. In order to monitor this sterilization process, calorimetric gas sensors as differential set-up of two platinum temperature sensors representing a catalytically active (additionally deposition of MnO2) and a passive segment have been recently developed. The temperature rise of the exothermic decomposition serves as an indicator of the present H2O2 concentration. In the present work, a theoretical approach considering the sensor's thermochemistry and physical transport phenomena was formulated to evaluate the temperature rise based on the energy content of gaseous H2O2. In a further part of this work, three polymers have been analyzed with respect to their application as passivation materials. The examined polymers are photoresist SU-8, perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). Thermal analyses by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been conducted to determine the operation limits of the polymers. The overall chemical resistance and stability of the polymers against the harsh environmental conditions during the sterilization process have been examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).}, language = {en} } @article{OberlaenderJildehKirchneretal.2015, author = {Oberl{\"a}nder, Jan and Jildeh, Zaid B. and Kirchner, Patrick and Wendeler, Luisa and Bromm, Alexander and Iken, Heiko and Wagner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Study of Interdigitated Electrode Arrays Using Experiments and Finite Element Models for the Evaluation of Sterilization Processes}, series = {Sensors}, volume = {15}, journal = {Sensors}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s151026115}, pages = {26115 -- 26127}, year = {2015}, abstract = {In this work, a sensor to evaluate sterilization processes with hydrogen peroxide vapor has been characterized. Experimental, analytical and numerical methods were applied to evaluate and study the sensor behavior. The sensor set-up is based on planar interdigitated electrodes. The interdigitated electrode structure consists of 614 electrode fingers spanning over a total sensing area of 20 mm2. Sensor measurements were conducted with and without microbiological spores as well as after an industrial sterilization protocol. The measurements were verified using an analytical expression based on a first-order elliptical integral. A model based on the finite element method with periodic boundary conditions in two dimensions was developed and utilized to validate the experimental findings.}, language = {en} } @article{OberlaenderBrommWendeleretal.2015, author = {Oberl{\"a}nder, Jan and Bromm, Alexander and Wendeler, Luisa and Iken, Heiko and Palomar Duran, Marlena and Greeff, Anton and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431900}, pages = {1299 -- 1305}, year = {2015}, abstract = {Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected.}, language = {en} } @article{MolinnusSorichBartzetal.2016, author = {Molinnus, Denise and Sorich, Maren and Bartz, Alexander and Siegert, Petra and Willenberg, Holger S. and Lisdat, Fred and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate}, series = {Sensors and Actuators B: Chemical}, volume = {237}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.06.064}, pages = {190 -- 195}, year = {2016}, abstract = {An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer's solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure.}, language = {en} } @article{MolinnusPoghossianKeusgenetal.2017, author = {Molinnus, Denise and Poghossian, Arshak and Keusgen, Michael and Katz, Evgeny and Sch{\"o}ning, Michael Josef}, title = {Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {8}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700208}, pages = {1840 -- 1849}, year = {2017}, abstract = {The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug-release, and closed-loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field-effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field-effect electrolyte-insulator-semiconductor sensor modified with a multi-enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed-loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{MolinnusJanusFangetal.2022, author = {Molinnus, Denise and Janus, Kevin Alexander and Fang, Anyelina C. and Drinic, Aleksander and Achtsnicht, Stefan and K{\"o}pf, Marius and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Thick-film carbon electrode deposited onto a biodegradable fibroin substrate for biosensing applications}, series = {Physica status solidi (a)}, volume = {219}, journal = {Physica status solidi (a)}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202200100}, pages = {1 -- 9}, year = {2022}, abstract = {This study addresses a proof-of-concept experiment with a biocompatible screen-printed carbon electrode deposited onto a biocompatible and biodegradable substrate, which is made of fibroin, a protein derived from silk of the Bombyx mori silkworm. To demonstrate the sensor performance, the carbon electrode is functionalized as a glucose biosensor with the enzyme glucose oxidase and encapsulated with a silicone rubber to ensure biocompatibility of the contact wires. The carbon electrode is fabricated by means of thick-film technology including a curing step to solidify the carbon paste. The influence of the curing temperature and curing time on the electrode morphology is analyzed via scanning electron microscopy. The electrochemical characterization of the glucose biosensor is performed by amperometric/voltammetric measurements of different glucose concentrations in phosphate buffer. Herein, systematic studies at applied potentials from 500 to 1200 mV to the carbon working electrode (vs the Ag/AgCl reference electrode) allow to determine the optimal working potential. Additionally, the influence of the curing parameters on the glucose sensitivity is examined over a time period of up to 361 days. The sensor shows a negligible cross-sensitivity toward ascorbic acid, noradrenaline, and adrenaline. The developed biocompatible biosensor is highly promising for future in vivo and epidermal applications.}, language = {en} }