@article{ProchnowGebingLadageetal.2011, author = {Prochnow, Nora and Gebing, Tina and Ladage, Kerstin and Krause-Finkeldey, Dorothee and Ourdi, Abessamad El and Bitz, Andreas and Streckert, Joachim and Hansen, Volkert and Dermietzel, Rolf}, title = {Electromagnetic field effect or simply stress? Effects of UMTS exposure on hippocampal longterm plasticity in the context of procedure related hormone release}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {5}, publisher = {PLOS}, address = {San Francisco}, doi = {10.1371/journal.pone.0019437}, pages = {e19437}, year = {2011}, abstract = {Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.}, language = {en} } @article{BialonskiWendlerLehnertz2011, author = {Bialonski, Stephan and Wendler, Martin and Lehnertz, Klaus}, title = {Unraveling spurious properties of interaction networks with tailored random networks}, series = {Plos one}, volume = {6}, journal = {Plos one}, number = {8}, publisher = {Plos}, address = {San Francisco}, doi = {10.1371/journal.pone.0022826}, pages = {e22826}, year = {2011}, abstract = {We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erd{\"o}s-R{\´e}nyi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures - known for their complex spatial and temporal dynamics - we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.}, language = {en} } @article{ImmelGrothHuhnetal.2011, author = {Immel, Timo A. and Groth, Ulrich and Huhn, Thomas and {\"O}hlschl{\"a}ger, Peter}, title = {Titanium salan complexes displays strong antitumor properties in vitro and in vivo in mice}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {3}, publisher = {Plos}, address = {San Francisco, California, US}, doi = {10.1371/journal.pone.0017869}, pages = {e17869}, year = {2011}, abstract = {The anticancer activity of titanium complexes has been known since the groundbreaking studies of K{\"o}pf and K{\"o}pf-Maier on titanocen dichloride. Unfortunately, possibly due to their fast hydrolysis, derivatives of titanocen dichloride failed in clinical studies. Recently, the new family of titanium salan complexes containing tetradentate ONNO ligands with anti-cancer properties has been discovered. These salan complexes are much more stabile in aqueous media. In this study we describe the biological activity of two titanium salan complexes in a mouse model of cervical cancer. High efficiency of this promising complex family was demonstrated for the first time in vivo. From these data we conclude that titanium salan complexes display very strong antitumor properties exhibiting only minor side effects. Our results may influence the chemotherapy with metallo therapeutics in the future.}, language = {en} }