@inproceedings{RajanKubalskiAltayetal.2017, author = {Rajan, Sreelakshmy and Kubalski, Thomas and Altay, Okyay and Dalguer, Luis A and Butenweg, Christoph}, title = {Multi-dimensional fragility analysis of a RC building with components using response surface method}, series = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, booktitle = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, publisher = {International Assn for Structural Mechanics in Reactor Technology (IASMiRT)}, address = {Raleigh, USA}, isbn = {9781510856776}, pages = {3126 -- 3135}, year = {2017}, abstract = {Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples.}, language = {en} } @inproceedings{ButenwegMeyerFehling2014, author = {Butenweg, Christoph and Meyer, Udo and Fehling, Ekkehard}, title = {INSYSME: first activities of the German partners}, series = {9th International Masonry Conference 2014 in Guimaraes, Portugal, 2014}, booktitle = {9th International Masonry Conference 2014 in Guimaraes, Portugal, 2014}, year = {2014}, language = {en} } @inproceedings{ButenwegRajan2014, author = {Butenweg, Christoph and Rajan, Sreelakshmy}, title = {Design and construction techniques of AAC masonry buildings in earthquakes regions}, series = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, booktitle = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, year = {2014}, language = {en} } @inproceedings{RosinKubalskiButenweg2013, author = {Rosin, Julia and Kubalski, Thomas and Butenweg, Christoph}, title = {Seismic isolation of cylindrical liquid storage tanks}, series = {Seismic design of industrial facilities}, booktitle = {Seismic design of industrial facilities}, editor = {Klinkel, Sven and Butenweg, Christoph and Lin, Gao and Holtschoppen, Britta}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-02810-7}, doi = {10.1007/978-3-658-02810-7_36}, pages = {429 -- 440}, year = {2013}, abstract = {Seismic excited liquid filled tanks are subjected to extreme loading due to hydrodynamic pressures, which can lead to nonlinear stability failure of the thinwalled cylindrical tanks, as it is known from past earthquakes. A significant reduction of the seismically induced loads can be obtained by the application of base isolation systems, which have to be designed carefully with respect to the modified hydrodynamic behaviour of the tank in interaction with the liquid. For this reason a highly sophisticated fluid-structure interaction model has to be applied for a realistic simulation of the overall dynamic system. In the following, such a model is presented and compared with the results of simplified mathematical models for rigidly supported tanks. Finally, it is examined to what extent a simple mechanical model can represent the behaviour of a base isolated tank in case of seismic excitation}, language = {en} } @misc{ButenwegGellertReindletal.2009, author = {Butenweg, Christoph and Gellert, Christoph and Reindl, Lukas and Meskouris, Konstantin}, title = {A nonlinear method for the seismic safety verification of masonry buildings}, publisher = {National Technical University of Athens}, address = {Athen}, year = {2009}, abstract = {In order for traditional masonry to stay a competitive building material in seismically active regions there is an urgent demand for modern, deformation-based verification procedures which exploit the nonlinear load bearing reserves. The Capacity Spectrum Method (CSM) is a widely accepted design approach in the field of reinforced concrete and steel construction. It compares the seismic action with the load-bearing capacity of the building considering nonlinear material behavior with its post-peak capacity. The bearing capacity of the building is calculated iteratively using single wall capacity curves. This paper presents a new approach for the bilinear approximation of single wall capacity curves in the style of EC6/EC8 respectively FEMA 306/FEMA 356 based on recent shear wall test results of the European Collective-Research Project "ESECMaSE". The application of the CSM to masonry structures by using bilinear approximations of capacity curves as input is demonstrated on the example of a typical German residential home.}, language = {en} } @article{ŠakićMarinkovićButenwegetal.2023, author = {Šakić, Bogdan and Marinković, Marko and Butenweg, Christoph and Klinkel, Sven}, title = {Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls}, series = {Engineering Structures}, volume = {276}, journal = {Engineering Structures}, editor = {Yang, J.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2022.115342}, year = {2023}, abstract = {Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study.}, language = {en} } @article{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Latest findings on the behaviour factor q for the seismic design of URM buildings}, series = {Bulletin of Earthquake Engineering}, volume = {20}, journal = {Bulletin of Earthquake Engineering}, number = {11}, editor = {Ansal, Atilla}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-1456}, doi = {10.1007/s10518-022-01419-7}, pages = {5797 -- 5848}, year = {2022}, abstract = {Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20-0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0-3.0 are proposed.}, language = {en} } @article{MarinkovićButenweg2022, author = {Marinković, Marko and Butenweg, Christoph}, title = {Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading}, series = {Construction and Building Materials}, volume = {318}, journal = {Construction and Building Materials}, number = {1}, editor = {Ford, Michael C.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-0526}, doi = {10.1016/j.conbuildmat.2021.126041}, year = {2022}, abstract = {Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated.}, language = {en} } @article{RossiWinandsButenweg2022, author = {Rossi, Leonardo and Winands, Mark H. M. and Butenweg, Christoph}, title = {Monte Carlo Tree Search as an intelligent search tool in structural design problems}, series = {Engineering with Computers : An International Journal for Simulation-Based Engineering}, volume = {38}, journal = {Engineering with Computers : An International Journal for Simulation-Based Engineering}, number = {4}, editor = {Zhang, Jessica}, publisher = {Springer Nature}, address = {Cham}, issn = {1435-5663}, doi = {10.1007/s00366-021-01338-2}, pages = {3219 -- 3236}, year = {2022}, abstract = {Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study's outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers.}, language = {en} } @article{ButenwegBursiPaolaccietal.2021, author = {Butenweg, Christoph and Bursi, Oreste S. and Paolacci, Fabrizio and Marinković, Marko and Lanese, Igor and Nardin, Chiara and Quinci, Gianluca}, title = {Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing}, series = {Engineering Structures}, volume = {243}, journal = {Engineering Structures}, number = {15}, editor = {Yang, J.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2021.112681}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions.}, language = {en} } @inproceedings{Butenweg2022, author = {Butenweg, Christoph}, title = {Seismic design and evaluation of industrial facilities}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Vacareanu, Radu and Ionescu, Constantin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-15103-3}, issn = {2524-342X}, doi = {10.1007/978-3-031-15104-0}, pages = {449 -- 464}, year = {2022}, abstract = {Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage.}, language = {en} } @incollection{GkatzogiasVeljkovivPohorylesetal.2022, author = {Gkatzogias, Konstantinos and Veljkoviv, Ana and Pohoryles, Daniel A. and Tsionis, Georgios and Bournas, Dionysios A. and Crowley, Helen and Norl{\´e}n, Hedvig and Butenweg, Christoph and Gervasio, Helena and Manfredi, Vincenzo and Masi, Angelo and Zaharieva, Roumiana}, title = {Policy practice and regional impact assessment for building renovation}, series = {REEBUILD Integrated Techniques for the Seismic Strengthening \& Energy Efficiency of Existing Buildings}, booktitle = {REEBUILD Integrated Techniques for the Seismic Strengthening \& Energy Efficiency of Existing Buildings}, editor = {Gkatzogias, Konstantinos and Tsionis, Georgios}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, isbn = {978-92-76-60454-9}, issn = {1831-9424}, doi = {10.2760/883122}, pages = {1 -- 68}, year = {2022}, abstract = {The work presented in this report provides scientific support to building renovation policies in the EU by promoting a holistic point of view on the topic. Integrated renovation can be seen as a nexus between European policies on disaster resilience, energy efficiency and circularity in the building sector. An overview of policy measures for the seismic and energy upgrading of buildings across EU Member States identified only a few available measures for combined upgrading. Regulatory framework, financial instruments and digital tools similar to those for energy renovation, together with awareness and training may promote integrated renovation. A framework for regional prioritisation of building renovation was put forward, considering seismic risk, energy efficiency, and socioeconomic vulnerability independently and in an integrated way. Results indicate that prioritisation of building renovation is a multidimensional problem. Depending on priorities, different integrated indicators should be used to inform policies and accomplish the highest relative or most spread impact across different sectors. The framework was further extended to assess the impact of renovation scenarios across the EU with a focus on priority regions. Integrated renovation can provide a risk-proofed, sustainable, and inclusive built environment, presenting an economic benefit in the order of magnitude of the highest benefit among the separate interventions. Furthermore, it presents the unique capability of reducing fatalities and energy consumption at the same time and, depending on the scenario, to a greater extent.}, language = {en} } @inproceedings{SteuerDankertSharmaBlecketal.2017, author = {Steuer-Dankert, Linda and Sharma, Mamta Rameshwarlal and Bleck, Wolfgang and Leicht-Scholten, Carmen}, title = {Innovation through Diversity - Development of a Diversity and Innovation management concept}, series = {International Conference on Innovation and Management : IAM23017S : Date: July 4-7, 2017, Osaka, Japan}, booktitle = {International Conference on Innovation and Management : IAM23017S : Date: July 4-7, 2017, Osaka, Japan}, editor = {Farn, C. K.}, publisher = {Kuang Hui Chiu}, address = {Osaka}, issn = {2218-6387}, pages = {Panel C}, year = {2017}, abstract = {Acknowledging that a diverse workforce could be a potential source of innovation, the current research deals with the fine details of why diversity management is central to achieving innovation in heterogeneous research groups and how this could be effectively realized in an organization. The types of heterogeneities addressed mainly include gender, qualification, academic discipline and intercultural perspectives. The type of organization being dealt with in this work is a complex association of research institutes at a technical university in Germany (RWTH Aachen University), namely a 'Cluster of Excellence', whereby several institutes of the university work collaboratively in different sub-projects. The 'Cluster of Excellence' is a part of the 'Excellence Initiative' of the German federal and state governments German Research Foundation (DFG) and German Council of Science and Humanities, with the ultimate aim of promoting cutting-edge research. To support interdisciplinary collaboration and thus the performance of the cluster, the development of a diversity and innovation management concept is presently in the conceptual phase and will be described in the frame of this paper. The 3-S-Diversity Model, composed of the three elements: skills, structure and strategy, serves as a basis for the development of the concept. The proposed concept consists of six phases; the first two phases lay the ground work by developing an understanding of the status quo on the forms of diversity in the Cluster of Excellence, the type of organizational structure of the member institutes and the varieties of specialist work cultures of the same. The third and the fourth phases build up on this foundation by means of qualitative and quantitative studies. While the third phase deals with the sensitization of the management level to the close connection between diversity and innovation; the need to manage them thereafter and find tailor-made methods of doing so, the fourth phase shall mainly focus on the mindset of the employees in this regard. The fifth phase shall consolidate the learnings and the ideas developed in the course of the first four phases into an implementable strategy. The ultimate phase shall be the implementation of this concept in the Cluster. The first three phases have been accomplished successfully and the preliminary results are already available.}, language = {en} } @incollection{StriebingMuellerSchraudneretal.2022, author = {Striebing, Clemens and M{\"u}ller, J{\"o}rg and Schraudner, Martina and Gewinner, Irina Valerie and Guerrero Morales, Patricia and Hochfeld, Katharina and Hoffman, Shekinah and Kmec, Julie A. and Nguyen, Huu Minh and Schneider, Jannick and Sheridan, Jennifer and Steuer-Dankert, Linda and Trimble O'Connor, Lindsey and Vandevelde-Rougale, Agn{\`e}s}, title = {Promoting diversity and combatting discrimination in research organizations: a practitioner's guide}, series = {Diversity and discrimination in research organizations}, booktitle = {Diversity and discrimination in research organizations}, publisher = {Emerald Publishing Limited}, address = {Bingley}, isbn = {978-1-80117-959-1 (Print)}, doi = {10.1108/978-1-80117-956-020221012}, pages = {421 -- 442}, year = {2022}, abstract = {The essay is addressed to practitioners in research management and from academic leadership. It describes which measures can contribute to creating an inclusive climate for research teams and preventing and effectively dealing with discrimination. The practical recommendations consider the policy and organizational levels, as well as the individual perspective of research managers. Following a series of basic recommendations, six lessons learned are formulated, derived from the contributions to the edited collection on "Diversity and Discrimination in Research Organizations."}, language = {en} } @incollection{SteuerDankertLeichtScholten2022, author = {Steuer-Dankert, Linda and Leicht-Scholten, Carmen}, title = {Perceiving diversity : an explorative approach in a complex research organization.}, series = {Diversity and discrimination in research organizations}, booktitle = {Diversity and discrimination in research organizations}, publisher = {Emerald Publishing Limited}, address = {Bingley}, isbn = {978-1-80117-959-1 (Print)}, doi = {10.1108/978-1-80117-956-020221010}, pages = {365 -- 392}, year = {2022}, abstract = {Diversity management is seen as a decisive factor for ensuring the development of socially responsible innovations (Beacham and Shambaugh, 2011; Sonntag, 2014; L{\´o}pez, 2015; Uebernickel et al., 2015). However, many diversity management approaches fail due to a one-sided consideration of diversity (Thomas and Ely, 2019) and a lacking linkage between the prevailing organizational culture and the perception of diversity in the respective organization. Reflecting the importance of diverse perspectives, research institutions have a special responsibility to actively deal with diversity, as they are publicly funded institutions that drive socially relevant development and educate future generations of developers, leaders and decision-makers. Nevertheless, only a few studies have so far dealt with the influence of the special framework conditions of the science system on diversity management. Focusing on the interdependency of the organizational culture and diversity management especially in a university research environment, this chapter aims in a first step to provide a theoretical perspective on the framework conditions of a complex research organization in Germany in order to understand the system-specific factors influencing diversity management. In a second step, an exploratory cluster analysis is presented, investigating the perception of diversity and possible influencing factors moderating this perception in a scientific organization. Combining both steps, the results show specific mechanisms and structures of the university research environment that have an impact on diversity management and rigidify structural barriers preventing an increase of diversity. The quantitative study also points out that the management level takes on a special role model function in the scientific system and thus has an influence on the perception of diversity. Consequently, when developing diversity management approaches in research organizations, it is necessary to consider the top-down direction of action, the special nature of organizational structures in the university research environment as well as the special role of the professorial level as role model for the scientific staff.}, language = {en} } @incollection{HinkeVervierBrauneretal.2022, author = {Hinke, Christian and Vervier, Luisa and Brauner, Philipp and Schneider, Sebastian and Steuer-Dankert, Linda and Ziefle, Martina and Leicht-Scholten, Carmen}, title = {Capability configuration in next generation manufacturing}, series = {Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models}, booktitle = {Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07733-3}, doi = {10.1007/978-3-031-07734-0_6}, pages = {95 -- 106}, year = {2022}, abstract = {Industrial production systems are facing radical change in multiple dimensions. This change is caused by technological developments and the digital transformation of production, as well as the call for political and social change to facilitate a transformation toward sustainability. These changes affect both the capabilities of production systems and companies and the design of higher education and educational programs. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these concepts, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the capabilities dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we discuss the benefits of capturing expert knowledge and making it accessible to newcomers, especially in highly specialized industries. The experts argue that in order to cope with the challenges and circumstances of today's world, students must already during their education at university learn how to work with AI and other technologies. This means that study programs must change and that universities must adapt their structural aspects to meet the needs of the students.}, language = {en} } @incollection{BraunerVervierBrillowskietal.2022, author = {Brauner, Philipp and Vervier, Luisa and Brillowski, Florian and Dammers, Hannah and Steuer-Dankert, Linda and Schneider, Sebastian and Baier, Ralph and Ziefle, Martina and Gries, Thomas and Leicht-Scholten, Carmen and Mertens, Alexander and Nagel, Saskia K.}, title = {Organization Routines in Next Generation Manufacturing}, series = {Forecasting Next Generation Manufacturing}, booktitle = {Forecasting Next Generation Manufacturing}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07734-0}, doi = {10.1007/978-3-031-07734-0_5}, pages = {75 -- 94}, year = {2022}, abstract = {Next Generation Manufacturing promises significant improvements in performance, productivity, and value creation. In addition to the desired and projected improvements regarding the planning, production, and usage cycles of products, this digital transformation will have a huge impact on work, workers, and workplace design. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these changes, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the organization dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we highlight seven areas in which the digital transformation of production will change how we work, how we organize the work within a company, how we evaluate these changes, and how employment and labor rights will be affected across company boundaries. The experts are unsure whether the use of collaborative robots in factories will replace traditional robots by 2030. They believe that the use of hybrid intelligence will supplement human decision-making processes in production environments. Furthermore, they predict that artificial intelligence will lead to changes in management processes, leadership, and the elimination of hierarchies. However, to ensure that social and normative aspects are incorporated into the AI algorithms, restricting measurement of individual performance will be necessary. Additionally, AI-based decision support can significantly contribute toward new, socially accepted modes of leadership. Finally, the experts believe that there will be a reduction in the workforce by the year 2030.}, language = {en} } @inproceedings{MertensBraunerBaieretal.2022, author = {Mertens, Alexander and Brauner, Philipp and Baier, Ralph and Brillowski, Florian and Dammers, Hannah and van Dyck, Marc and Kong, Iris and K{\"o}nigs, Peter and Kordtomeikel, Frauke and Liehner, Gian Luca and P{\"u}tz, Sebastian and Rodermann, Niklas and Schaar, Anne Kathrin and Steuer-Dankert, Linda and Vervier, Luisa and Wlecke, Shari and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank T. and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows}, series = {Modellierung 2022 Satellite Events}, booktitle = {Modellierung 2022 Satellite Events}, editor = {Michael, Judith and Pfeiffer, J{\´e}r{\^o}me and Wortmann, Andreas}, publisher = {GI Gesellschaft f{\"u}r Informatik}, address = {Bonn}, doi = {10.18420/modellierung2022ws-018}, pages = {147 -- 149}, year = {2022}, abstract = {The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production.}, language = {en} } @inproceedings{MertensPuetzBrauneretal.2021, author = {Mertens, Alexander and P{\"u}tz, Sebastian and Brauner, Philipp and Brillowski, Florian Sascha and Buczak, Nadine and Dammers, Hannah and van Dyck, Marc and Kong, Iris and K{\"o}nigs, Peter and Kortomeikel, Frauke Carole and Rodemann, Niklas and Schaar, Anne Kathrin and Steuer-Dankert, Linda and Wlecke, Shari and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank Thomas and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {Human digital shadow: Data-based modeling of users and usage in the internet of production}, series = {14th Conference Human System Interaction Conference Proceedings}, booktitle = {14th Conference Human System Interaction Conference Proceedings}, publisher = {IEEE}, doi = {10.1109/HSI52170.2021.9538729}, pages = {1 -- 8}, year = {2021}, abstract = {Digital Shadows as the aggregation, linkage and abstraction of data relating to physical objects are a central vision for the future of production. However, the majority of current research takes a technocentric approach, in which the human actors in production play a minor role. Here, the authors present an alternative anthropocentric perspective that highlights the potential and main challenges of extending the concept of Digital Shadows to humans. Following future research methodology, three prospections that illustrate use cases for Human Digital Shadows across organizational and hierarchical levels are developed: human-robot collaboration for manual work, decision support and work organization, as well as human resource management. Potentials and challenges are identified using separate SWOT analyses for the three prospections and common themes are emphasized in a concluding discussion.}, language = {en} } @phdthesis{SteuerDankert2020, author = {Steuer-Dankert, Linda}, title = {Diversity in complex organizations : the triangle of diversity management, change management and organizational culture from a system-theoretical perspective}, doi = {10.18154/RWTH-2020-11830}, pages = {298}, year = {2020}, abstract = {Insbesondere im wirtschaftlichen Kontext wird die Diversit{\"a}t von Belegschaften zunehmend als ein kritischer Erfolgsfaktor gesehen. Neben dem Potenzial, welches sich laut Studien aus einem vielf{\"a}ltigen Team ergibt, werden jedoch ebenfalls die aus menschlicher Diversit{\"a}t resultierenden Herausforderungen thematisiert und wissenschaftlich untersucht. Sowohl aus dem Potenzial als auch aus den Herausforderungen ergibt sich dabei die Notwendigkeit der Implementierung eines organisationsspezifischen Diversity Managements, welches die Gewinnung neuer Mitarbeiter*innen einerseits und das Management der vorhandenen Vielfalt andererseits gleichermaßen unterst{\"u}tzt. In der psychologischen, sozial- und wirtschaftswissenschaftlichen Literatur gibt es unterschiedliche Definitionen von Diversit{\"a}t, woraus sich verschiedene Perspektiven auf das Vorgehen bei der Gestaltung und Umsetzung eines Diversity Management Ansatzes ergeben. Insbesondere vor dem Hintergrund der Komplexit{\"a}t des Organisationsumfeldes und der steigenden Anforderungen an die organisationsinterne Agilit{\"a}t besteht die Notwendigkeit, Diversit{\"a}t in Organisationen st{\"a}rker zu reflektieren und systemspezifische Ans{\"a}tze zu entwickeln. Dies erfordert die Ber{\"u}cksichtigung organisationsspezifischer Strukturen und Prozesse sowie die Reflexion des Wandels der Organisationskultur durch die Umsetzung eines Diversity Management Ansatzes, der die gegebene Komplexit{\"a}t aufgreift und bew{\"a}ltigen kann. Dar{\"u}ber hinaus sind die psychologischen Auswirkungen solcher Ver{\"a}nderungen auf die Mitarbeiter*innen zu ber{\"u}cksichtigen, um Reaktanzen zu vermeiden und eine nachhaltige Umsetzung von Diversity Management zu erm{\"o}glichen. In Ermangelung entsprechender Ans{\"a}tze im Rahmen {\"o}ffentlich finanzierter, komplexer Forschungsorganisationen, ist das Ziel dieser Dissertation die Entwicklung und Erprobung eines Forschungsdesigns, welches die Ans{\"a}tze des Diversity- und Change Managements mit der Organisationskultur verkn{\"u}pft, indem es eine systemtheoretische Perspektive einnimmt. Dabei wird das Forschungsdesign auf eine komplexe wissenschaftliche Organisation angewendet. Als Basis dient die in Teil A durchgef{\"u}hrte Betrachtung des aktuellen Forschungsstandes aus einer interdisziplin{\"a}ren Perspektive und die damit einhergehende umfassende Einf{\"u}hrung in das Forschungsfeld. Im Zuge dessen wird detailliert auf die begriffliche Definition von Diversit{\"a}t eingegangen, bevor dann die psychologischen Konzepte im Diversit{\"a}tskontext den {\"U}bergang zu einer differenzierten Auseinandersetzung mit dem Konzept des Diversity Managements bilden. Auf dieser Grundlage werden das Forschungsdesign sowie die daraus resultierenden Forschungsphasen abgeleitet. Teil A stellt somit die theoretische Grundlage f{\"u}r die in Teil B pr{\"a}sentierten Fachaufs{\"a}tze dar. Jeder Fachaufsatz beleuchtet dabei in chronologischer Reihenfolge die unterschiedlichen Forschungsphasen. Fachaufsatz I pr{\"a}sentiert den sechsstufigen Forschungsansatz und beleuchtet die besonderen Rahmenbedingungen des Forschungsobjektes aus einer theoretischen Perspektive. Im Anschluss werden die Ergebnisse der Organisationsanalyse, welche zugleich Phase I und II des Forschungskonzeptes darstellen, vorgestellt. Aufbauend auf diesen Forschungsergebnissen fokussiert Forschungsaufsatz II die Darlegung der Ergebnisse aus Forschungsphase III, der Befragung der F{\"u}hrungsebene. Die Befragung thematisierte dabei die Wahrnehmung von Diversity und Diversity Management auf F{\"u}hrungsebene, die Verkn{\"u}pfung von Diversit{\"a}t mit Innovation sowie die Reflexion des eigenen F{\"u}hrungsstils. Als Ergebnis der Befragung konnten sechs Typen identifiziert werden, die das F{\"u}hrungsverst{\"a}ndnis im Diversit{\"a}tskontext widerspiegeln und somit den Ansatzpunkt f{\"u}r eine top-down gerichtete Diversity Management Strategie darstellen. Darauf aufbauend wird in Forschungsphase IV die Mitarbeiter*innenebene beforscht. Im Zentrum der quantitativen Befragung standen die vorherrschenden Einstellungen zum Themenkomplex Diversity und Diversity Management, die Wahrnehmung von Diversit{\"a}t sowie die Untersuchung des Einflusses der F{\"u}hrungsebene auf die Mitarbeiter*innenebene. Forschungsaufsatz III pr{\"a}sentiert erste Ergebnisse dieser Untersuchung. Die Analyse weist auf eine unterschiedliche Gewichtung der verschiedenen Diversit{\"a}tskategorien hinsichtlich der Verkn{\"u}pfung mit Innovationen und somit der Reflexion des Kontextes zwischen Diversit{\"a}t und Innovationen hin. Vergleichbar mit den identifizierten Typen auf der F{\"u}hrungsebene, deutet die Analyse auf die Existenz unterschiedlicher Reflexionsgrade auf Mitarbeiter*innenebene hin. Auf Basis dessen wird im Rahmen von Forschungsaufsatz IV eine n{\"a}here Untersuchung des Reflexionsgrades auf Mitarbeiter*innenebene pr{\"a}sentiert und der Diversity Management Ansatz mit Elementen des Change Managements kombiniert. Besondere Ber{\"u}cksichtigung findet als Schlussfolgerung einer theoretischen Analyse die Organisationskultur als zentrales Element bei der Entwicklung und Einf{\"u}hrung eines Diversity Management Ansatzes in eine komplexe Forschungsorganisation in Deutschland. Die Analyse zeigt, dass die Wahrnehmung von Diversit{\"a}t heterogen aber zun{\"a}chst losgel{\"o}st vom individuellen Hintergrund ist (im Rahmen dieser Analyse lag der Fokus auf den Diversit{\"a}tskategorien Gender und Herkunft). Hinsichtlich der Wertsch{\"a}tzung von Diversit{\"a}t zeigt sich dabei ebenfalls ein heterogenes Bild. In der Gesamtbetrachtung stimmen lediglich 17\% der Mitarbeiter*innen zu, dass Diversit{\"a}tskategorien wie Gender, Herkunft oder auch Alter einen Mehrwert darstellen k{\"o}nnen. Zugleich bewertet diese Gruppe die dem Thema beigemessene Wichtigkeit im CoE als ausreichend. Zusammengefasst lassen sich folgende Erkenntnisse im Rahmen dieser Dissertation ableiten und dienen somit als Grundlage f{\"u}r die Entwicklung eines Diversity Management Ansatzes: (1) Die Entwicklung eines bedarfsorientierten Diversity Management Ansatzes erfordert einen systemtheoretischen Prozess, der sowohl organisationsinterne als auch externe Einflussfaktoren ber{\"u}cksichtigt. Der im Rahmen des Forschungsprojektes entwickelte sechsstufige Forschungsprozess hat sich dabei als geeignetes Instrument erwiesen. (2)Im Rahmen {\"o}ffentlicher Forschungseinrichtungen lassen sich dabei drei zentrale Faktoren identifizieren: die individuelle Reflexionsebene, die Organisationskultur sowie extern beeinflusste Organisationsstrukturen, Prozesse und Systeme.(3)Vergleichbar mit privatwirtschaftlichen Unternehmen hat auch in wissenschaftlichen Organisationen die F{\"u}hrungsebene einen maßgeblichen Einfluss auf die Wahrnehmung von Diversit{\"a}t und somit einen Einfluss auf die Umsetzung einer Diversity Management Strategie. Daher ist auch im wissenschaftlichen Kontext, bedingt durch die rechtlichen Rahmenbedingungen des Hochschulsystems, ein top-down Ansatz f{\"u}r eine nachhaltige Implementierung erforderlich. (4) Diversity Management steht in einem engen Zusammenhang mit einem organisationalen Wandel, was die Reflexion von Ver{\"a}nderungsprozesse aus einer psychologischen Perspektive erfordert und eine Verkn{\"u}pfung von Diversity und Change Management bedingt. Aufbauend auf den im Rahmen des entwickelten Forschungskonzeptes gewonnenen zentralen Erkenntnissen wird ein Ansatz entwickelt, der die Ableitung theoretischer Implikationen sowie Implikationen f{\"u}r das Management erm{\"o}glicht. Insbesondere vor dem Hintergrund der Reflexion der besonderen Rahmenbedingungen {\"o}ffentlich finanzierter Forschungsorganisationen werden dar{\"u}ber hinaus politische Implikationen abgeleitet, die auf die Ver{\"a}nderung struktureller Dimensionen abzielen.}, language = {en} }