@article{WittmannSchmidtPadekenetal.1988, author = {Wittmann, Klaus and Schmidt, H. P. and Padeken, D. and Hildmann, B.}, title = {The Microgravity User Support Centre (MUSC)}, series = {ESA SP. 277 (1988)}, journal = {ESA SP. 277 (1988)}, isbn = {0379-6566}, pages = {525}, year = {1988}, language = {en} } @article{ArtmannSchmidSchoenbein1987, author = {Artmann, Gerhard and Schmid-Sch{\"o}nbein, H.}, title = {The microscope-photometrical-monolayer-technique- a new principle for analyzing the distribution of rheological responses in pathological and experimentally modified red cell populations. Artmann, Gerhard Michael; Schmid-Sch{\"o}nbein, H.}, series = {Microcirculation, an update : proceedings of the Fourth World Congress for Microcirculation, Tokyo, Japan, July 26-30, 1987}, journal = {Microcirculation, an update : proceedings of the Fourth World Congress for Microcirculation, Tokyo, Japan, July 26-30, 1987}, publisher = {Excerpta Medica}, address = {Amsterdam [u.a.]}, isbn = {0444809511}, pages = {475 -- 477}, year = {1987}, language = {en} } @article{HautzelTaylorKrauseetal.2001, author = {Hautzel, H. and Taylor, J. G. and Krause, B. J. and Schmitz, N. and Tellmann, L. and Ziemons, Karl and Shah, N. J. and Herzog, H. and M{\"u}ller-G{\"a}rtner, H.-W.}, title = {The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies}, series = {Brain Research}, volume = {892}, journal = {Brain Research}, number = {2}, isbn = {0006-8993}, pages = {281 -- 292}, year = {2001}, abstract = {The motion aftereffect is a perceptual phenomenon which has been extensively investigated both psychologically and physiologically. Neuroimaging techniques have recently demonstrated that area V5/MT is activated during the perception of this illusion. The aim of this study was to test the hypothesis if a more broadly distributed network of brain regions subserves the motion aftereffect. To identify the neuronal structures involved in the perception of the motion aftereffect, regional cerebral blood flow (rCBF) measurements with positron emission tomography were performed in six normal volunteers. Data were analysed using SPM96. The motion-sensitive visual areas including area V5/MT were activated in both hemispheres. Additionally, the lateral parietal cortex bilaterally, the right dorsolateral prefrontal cortex, the anterior cingulate cortex and the left cerebellum showed significant increases in rCBF values during the experience of the waterfall illusion. In a further reference condition with identical attentional demand but no perception of a motion aftereffect elevated rCBF were found in these regions as well. In conclusion, our findings support the notion that the perceptual illusion of motion arises exclusively in the motion-sensitive visual area V5/MT. In addition, a more widespread network of brain regions including the prefrontal and parietal cortex is activated during the waterfall illusion which represents a non-motion aftereffect-specific subset of brain areas but is involved in more basic attentional processing and cognition.}, language = {de} } @inproceedings{DowidatKoenigWolf2017, author = {Dowidat, Linda and K{\"o}nig, Johannes Alexander and Wolf, Martin R.}, title = {The motivational competence developing game framework}, series = {Mensch und Computer 2017 - Tagungsband}, booktitle = {Mensch und Computer 2017 - Tagungsband}, publisher = {Gesellschaft f{\"u}r Informatik e.V.}, address = {Regensburg}, doi = {10.18420/muc2017-mci-0130}, pages = {15 -- 26}, year = {2017}, abstract = {Competence Developing Games (CDGs) are a new concept of how to think about games with serious intentions. In order to emphasize on this topic, a new framework has been developed. It basically relies on learning and motivation theories. This 'motivational Competence Developing Game Framework' demonstrates how it is possible to use these theories in a CDG development process. The theoretical derivation and use of the framework is explained in this paper.}, language = {en} } @article{TaylorSchmitzZiemonsetal.2000, author = {Taylor, J. G. and Schmitz, N. and Ziemons, Karl and Grosse-Ruyken, M.-L. and Gruber, O. and M{\"u}ller-G{\"a}rtner, H.-W. and Shah, N. J.}, title = {The network of brain areas involved in the motion aftereffect}, series = {Neuroimage}, volume = {11}, journal = {Neuroimage}, number = {4}, isbn = {1053-8119}, pages = {257 -- 270}, year = {2000}, abstract = {A network of brain areas is expected to be involved in supporting the motion aftereffect. The most active components of this network were determined by means of an fMRI study of nine subjects exposed to a visual stimulus of moving bars producing the effect. Across the subjects, common areas were identified during various stages of the effect, as well as networks of areas specific to a single stage. In addition to the well-known motion-sensitive area MT the prefrontal brain areas BA44 and 47 and the cingulate gyrus, as well as posterior sites such as BA37 and BA40, were important components during the period of the motion aftereffect experience. They appear to be involved in control circuitry for selecting which of a number of processing styles is appropriate. The experimental fMRI results of the activation levels and their time courses for the various areas are explored. Correlation analysis shows that there are effectively two separate and weakly coupled networks involved in the total process. Implications of the results for awareness of the effect itself are briefly considered in the final discussion.}, language = {en} } @article{MuellerVeggianMoroFerretietal.2006, author = {M{\"u}ller-Veggian, Mattea and Moro, D. and Ferreti, A. and Colautti, P.}, title = {The new articulated twin mini TEPC}, series = {Annual Report 2006 / Istituto Nazionale di Fisica Nucleare / Laboratori Nazionali }, journal = {Annual Report 2006 / Istituto Nazionale di Fisica Nucleare / Laboratori Nazionali }, address = {Legnaro}, pages = {273}, year = {2006}, language = {en} } @article{SchererHessbergerGaeggeleretal.1989, author = {Scherer, Ulrich W. and Heßberger, F. P. and G{\"a}ggeler, H. W. and Armbruster, P.}, title = {The New Nuclide 225U / F.P. Heßberger, H. G{\"a}ggeler, P. Armbruster, W. Br{\"u}chle, H. Folger, S. Hofmann, D. Jost, J.V. Kratz, M.E. Leino, G. M{\"u}nzenberg, V. Ninov, M. Sch{\"a}del, U.W. Scherer, K. S{\"u}mmerer, A. T{\"u}rler, D. Ackerman}, series = {Zeitschrift f{\"u}r Physik A Hadrons and Nuclei. 333 (1989), H. 1}, journal = {Zeitschrift f{\"u}r Physik A Hadrons and Nuclei. 333 (1989), H. 1}, isbn = {0939-7922}, pages = {111 -- 112}, year = {1989}, language = {en} } @article{MuellerVeggianTurekColautti2005, author = {M{\"u}ller-Veggian, Mattea and Turek, M. and Colautti, P.}, title = {The new Twin mini TEPC: an advanced tool for Boron Neutron Capture Therapy}, series = {Annual report / Istituto Nazionale di Fisica Nucleare, LNL, Laboratori Nazionali di Legnaro. 2004 (2005)}, journal = {Annual report / Istituto Nazionale di Fisica Nucleare, LNL, Laboratori Nazionali di Legnaro. 2004 (2005)}, isbn = {88-7337-008-X}, pages = {244 -- 245}, year = {2005}, language = {en} } @inproceedings{WuKemper2016, author = {Wu, Ziyi and Kemper, Hans}, title = {The optimal 48 V - battery pack for a specific load profile of a heavy duty vehicle}, series = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, booktitle = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, year = {2016}, language = {en} } @article{MuellerVeggianBeuscherGonoetal.1977, author = {M{\"u}ller-Veggian, Mattea and Beuscher, H. and Gono, Y. and Lieder, R. M.}, title = {The orange-ß-spectrometer at the external beam of the cyclotron}, series = {Annual report 1976 / Institut f{\"u}r Kernphysik Kernforschungsanlage J{\"u}lich / Ed. board: A. F{\"a}ßler ...}, journal = {Annual report 1976 / Institut f{\"u}r Kernphysik Kernforschungsanlage J{\"u}lich / Ed. board: A. F{\"a}ßler ...}, publisher = {Kernforschungsanlage}, address = {J{\"u}lich}, pages = {124}, year = {1977}, language = {en} } @article{KotterRiekertWeyland1985, author = {Kotter, Michael and Riekert, Lothar and Weyland, Friedrich}, title = {The performance of base metal oxides on ceramic carriers as catalysts for air pollution control}, series = {International chemical engineering. 25 (1985), H. 3}, journal = {International chemical engineering. 25 (1985), H. 3}, isbn = {0020-6318}, pages = {418 -- 427}, year = {1985}, language = {en} } @article{HagemannLadeWarnieretal.1991, author = {Hagemann, Hans-J{\"u}rgen and Lade, H. and Warnier, J. and Wiechert, D. U.}, title = {The performance of Depressed-Cladding Single-Mode Fibres with Different b/a Ratios. Hagemann, H.-J.; Lade, H.; Warnier, J.; Wiechert, D. U.}, series = {Journal of Lightwave Technology (J-LT) / Institute of Electrical and Electronics Engineers (IEEE). 9 (1991), H. 6}, journal = {Journal of Lightwave Technology (J-LT) / Institute of Electrical and Electronics Engineers (IEEE). 9 (1991), H. 6}, isbn = {0733-8724}, pages = {689 -- 694}, year = {1991}, language = {en} } @inproceedings{Wollert2012, author = {Wollert, J{\"o}rg}, title = {The performance of UWB-communication in an industrial environment}, series = {IEEE 1st International Symposium on Wireless Systems : (IDAACS-SWS) : Offenburg, 20-21 Sept. 2012}, booktitle = {IEEE 1st International Symposium on Wireless Systems : (IDAACS-SWS) : Offenburg, 20-21 Sept. 2012}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {International Symposium on Wireless Systems <1, 2012, Offenburg>}, isbn = {978-1-4673-4678-8}, doi = {10.1109/IDAACS-SWS.2012.6377639}, pages = {85 -- 90}, year = {2012}, language = {en} } @article{WilsonDickieSchreiteretal.2018, author = {Wilson, C. E. and Dickie, A. P. and Schreiter, K. and Wehr, R. and Wilson, E. M. and Bial, J. and Scheer, Nico and Wilson, I. D. and Riley, R. J.}, title = {The pharmacokinetics and metabolism of diclofenac in chimeric humanized and murinized FRG mice}, series = {Archives of Toxicology}, volume = {92}, journal = {Archives of Toxicology}, number = {6}, publisher = {Springer}, issn = {1432-0738}, doi = {10.1007/s00204-018-2212-1}, pages = {1953 -- 1967}, year = {2018}, abstract = {The pharmacokinetics of diclofenac were investigated following single oral doses of 10 mg/kg to chimeric liver humanized and murinized FRG and C57BL/6 mice. In addition, the metabolism and excretion were investigated in chimeric liver humanized and murinized FRG mice. Diclofenac reached maximum blood concentrations of 2.43 ± 0.9 µg/mL (n = 3) at 0.25 h post-dose with an AUCinf of 3.67 µg h/mL and an effective half-life of 0.86 h (n = 2). In the murinized animals, maximum blood concentrations were determined as 3.86 ± 2.31 µg/mL at 0.25 h post-dose with an AUCinf of 4.94 ± 2.93 µg h/mL and a half-life of 0.52 ± 0.03 h (n = 3). In C57BL/6J mice, mean peak blood concentrations of 2.31 ± 0.53 µg/mL were seen 0.25 h post-dose with a mean AUCinf of 2.10 ± 0.49 µg h/mL and a half-life of 0.51 ± 0.49 h (n = 3). Analysis of blood indicated only trace quantities of drug-related material in chimeric humanized and murinized FRG mice. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles in humanized mice were different to those of both murinized and wild-type animals, e.g., a higher proportion of the dose was detected in the form of acyl glucuronide metabolites and much reduced amounts as taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57BL/6J mice and humans revealed a greater, though not complete, match between chimeric humanized mice and humans, such that the liver humanized FRG model may represent a model for assessing the biotransformation of such compounds in humans.}, language = {en} } @article{WilsonWilsonScheeretal.2017, author = {Wilson, Ian D. and Wilson, Claire E. and Scheer, Nico and Dickie, A.P. and Schreiter, K. and Wilson, E. M. and Riley, R. J. and Wehr, R. and Bial, J.}, title = {The Pharmacokinetics and Metabolism of Lumiracoxib in Chimeric Humanized and Murinized FRG Mice}, series = {Biochemical pharmacology}, volume = {Volume 135}, journal = {Biochemical pharmacology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2968}, doi = {10.1016/j.bcp.2017.03.015}, pages = {139 -- 150}, year = {2017}, language = {en} } @inproceedings{BuxbaumHessRingbeck2001, author = {Buxbaum, Bernd and Hess, Holger and Ringbeck, Thorsten}, title = {The photonic mixer device : new perspectives in optical wireless communication}, series = {International Workshop on Optical MEMS and Integrated Optics : Universit{\"a}t Dortmund, Universit{\"a}tskolleg Bommerholz, 11. \& 12. June 2001}, booktitle = {International Workshop on Optical MEMS and Integrated Optics : Universit{\"a}t Dortmund, Universit{\"a}tskolleg Bommerholz, 11. \& 12. June 2001}, editor = {Voges, Edgar}, publisher = {Univ.}, address = {Dortmund}, pages = {(12)1 -- (12)5}, year = {2001}, language = {en} } @article{WilsonBlome2009, author = {Wilson, T. L. and Blome, Hans-Joachim}, title = {The Pioneer anomaly and a rotating G{\"o}del universe}, series = {Advances in Space Research}, volume = {44}, journal = {Advances in Space Research}, number = {11}, isbn = {0273-1177}, pages = {1345 -- 1353}, year = {2009}, language = {en} } @article{BlomeKosbow2005, author = {Blome, Hans-Joachim and Kosbow, Michael}, title = {The Pioneer Anomaly in the context of non-Newtonian Gravity}, series = {International Astronautical Congress : final papers : October 17-21, 2005, Fukuoka, Japan}, journal = {International Astronautical Congress : final papers : October 17-21, 2005, Fukuoka, Japan}, publisher = {International Astronautical Federation}, address = {Paris}, pages = {20 -- 20}, year = {2005}, language = {en} } @article{EggertKnackstedtFleischeretal.2013, author = {Eggert, Mathias and Knackstedt, Ralf and Fleischer, Stefan and Becker, J{\"o}rg}, title = {The Potential of Configurative Reference Modeling for Business to Government Reporting - A Modeling Technique and its Evaluation}, series = {e-Service Journal}, volume = {9}, journal = {e-Service Journal}, number = {1}, publisher = {Indiana University Press}, address = {Bloomington}, issn = {1528-8234}, pages = {28 -- 59}, year = {2013}, language = {en} } @inproceedings{HoffmannNierenGaebetal.2019, author = {Hoffmann, Katharina and Nieren, Monika and G{\"a}b, Martina and Kasper, Anna and Elbers, Gereon}, title = {The potential of near infrared spectroscopy (NIRS) for the environmental biomonitoring of plants}, series = {International conference on Life Sciences and Technology}, volume = {276}, booktitle = {International conference on Life Sciences and Technology}, number = {012009}, issn = {1755-1315}, doi = {10.1088/1755-1315/276/1/012009}, pages = {1 -- 3}, year = {2019}, abstract = {In the current environmental condition, the increase in pollution of the air, water, and soil indirectly will induce plants stress and decrease vegetation growth rate. These issues pay more attention to be solved by scientists worldwide. The higher level of chemical pollutants also induced the gradual changes in plants metabolism and decreased enzymatic activity. Importantly, environmental biomonitoring may play a pivotal contribution to prevent biodiversity degradation and plants stress due to pollutant exposure. Several previous studies have been done to monitor the effect of environmental changes on plants growth. Among that, Near Infrared spectroscopy (NIRS) offers an alternative way to observe the significant alteration of plant physiology caused by environmental damage related to pollution. Impairment of photosynthesis, nutrient and oxidative imbalances, and mutagenesis.}, language = {en} }