@inproceedings{AmirBauckhageChircuetal.2022, author = {Amir, Malik and Bauckhage, Christian and Chircu, Alina and Czarnecki, Christian and Knopf, Christian and Piatkowski, Nico and Sultanow, Eldar}, title = {What can we expect from quantum (digital) twins?}, publisher = {AIS Electronic Library (AISeL)}, pages = {1 -- 14}, year = {2022}, abstract = {Digital twins enable the modeling and simulation of real-world entities (objects, processes or systems), resulting in improvements in the associated value chains. The emerging field of quantum computing holds tremendous promise for evolving this virtualization towards Quantum (Digital) Twins (QDT) and ultimately Quantum Twins (QT). The quantum (digital) twin concept is not a contradiction in terms - but instead describes a hybrid approach that can be implemented using the technologies available today by combining classical computing and digital twin concepts with quantum processing. This paper presents the status quo of research and practice on quantum (digital) twins. It also discuses their potential to create competitive advantage through real-time simulation of highly complex, interconnected entities that helps companies better address changes in their environment and differentiate their products and services.}, language = {en} } @inproceedings{WiegnerVolkerMainzetal.2022, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and L{\"o}ken, Michael and H{\"u}ning, Felix}, title = {Wiegand-effect-powered wireless IoT sensor node}, series = {Sensoren und Messsysteme 2022}, booktitle = {Sensoren und Messsysteme 2022}, publisher = {VDE Verlag GmbH}, address = {Berlin}, isbn = {978-3-8007-5835-7}, pages = {255 -- 260}, year = {2022}, abstract = {In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.}, language = {en} } @incollection{BensbergCzarneckiGrob2022, author = {Bensberg, Frank and Czarnecki, Christian and Grob, Heinz Lothar}, title = {Wirtschaftlichkeitsbewertung von Smart Services mit vollst{\"a}ndigen Finanzpl{\"a}nen}, series = {Smart Services: Band 1: Konzepte - Methoden - Prozesse}, booktitle = {Smart Services: Band 1: Konzepte - Methoden - Prozesse}, editor = {Bruhn, Manfred and Hadwich, Karsten}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-37344-3 (Online)}, doi = {10.1007/978-3-658-37344-3_6}, pages = {225 -- 251}, year = {2022}, abstract = {Dieser Beitrag stellt einen Bewertungsrahmen f{\"u}r Smart Services vor, der auf dem Konzept vollst{\"a}ndiger Finanzpl{\"a}ne (VOFI) basiert. Zun{\"a}chst wird eine IoT-Architektur f{\"u}r Smart Services eingef{\"u}hrt, die die Grundlage f{\"u}r deren Betrachtung aus Sicht der Unternehmensplanung liefert. Hierauf aufbauend wird ein Bewertungsrahmen f{\"u}r die finanzplanorientierte Wirtschaftlichkeitsbewertung von Smart Services geschaffen, mit dem die relevanten Zahlungsfolgen differenziert erfasst werden. Mithilfe des entwickelten VOFI-Systems wird anschließend aufgezeigt, wie mithilfe einer Risikoanalyse die Unsicherheit von Modellparametern ber{\"u}cksichtigt werden kann.}, language = {de} } @misc{HueningBackes2022, author = {H{\"u}ning, Felix and Backes, Andreas}, title = {Wiegand-Modul}, year = {2022}, abstract = {Ein Wiegand-Modul (110;210;310) umfassend- eine Sensorspule (112;212;312),- einen ersten Wiegand-Draht (116a;216a;316a), der zumindest teilweise innerhalb der Sensorspule (112;212;312) angeordnet ist, und- einen zweiten Wiegand-Draht (116b;216b;316b), der zumindest teilweise innerhalb der Sensorspule (112;212;312) angeordnet ist und sich im Wesentlichen parallel zu dem ersten Wiegand-Draht (116a;216a;316a) erstreckt, ist bekannt.Um eine effiziente Ausnutzung der durch die Ummagnetisierung der Wiegand-Dr{\"a}hte (116a,116b;216a,216b;316a,316b) in die Sensorspule (112;212;312) induzierten elektrischen Energie zu erm{\"o}glichen, sind der erste Wiegand-Draht (116a;216a;316a) und der zweite Wiegand-Draht (116b;216b;316b) bezogen auf eine axiale Richtung der Sensorspule (112;212;312) versetzt zueinander angeordnet.}, language = {de} } @article{HoffmannRohrbachUhletal.2022, author = {Hoffmann, Andreas and Rohrbach, Felix and Uhl, Matthias and Ceblin, Maximilian and Bauer, Thomas and Mallah, Marcel and Jacob, Timo and Heuermann, Holger and Kuehne, Alexander J. C.}, title = {Atmospheric pressure plasma-jet treatment of polyacrylonitrile-nonwovens—Stabilization and roll-to-roll processing}, series = {Journal of Applied Polymer Science}, volume = {139}, journal = {Journal of Applied Polymer Science}, number = {37}, publisher = {Wiley}, issn = {0021-8995 (Print)}, doi = {10.1002/app.52887}, pages = {1 -- 9}, year = {2022}, abstract = {Carbon nanofiber nonwovens represent a powerful class of materials with prospective application in filtration technology or as electrodes with high surface area in batteries, fuel cells, and supercapacitors. While new precursor-to-carbon conversion processes have been explored to overcome productivity restrictions for carbon fiber tows, alternatives for the two-step thermal conversion of polyacrylonitrile precursors into carbon fiber nonwovens are absent. In this work, we develop a continuous roll-to-roll stabilization process using an atmospheric pressure microwave plasma jet. We explore the influence of various plasma-jet parameters on the morphology of the nonwoven and compare the stabilized nonwoven to thermally stabilized samples using scanning electron microscopy, differential scanning calorimetry, and infrared spectroscopy. We show that stabilization with a non-equilibrium plasma-jet can be twice as productive as the conventional thermal stabilization in a convection furnace, while producing electrodes of comparable electrochemical performance.}, language = {en} } @article{FiedlerOrzadaFloeseretal.2022, author = {Fiedler, Thomas M. and Orzada, Stephan and Fl{\"o}ser, Martina and Rietsch, Stefan H. G. and Schmidt, Simon and Stelter, Jonathan K. and Wittrich, Marco and Quick, Harald H. and Bitz, Andreas and Ladd, Mark E.}, title = {Performance and safety assessment of an integrated transmitarray for body imaging at 7 T under consideration of specificabsorption rate, tissue temperature, and thermal dose}, series = {NMR in Biomedicine}, volume = {35}, journal = {NMR in Biomedicine}, number = {5}, publisher = {Wiley}, issn = {0952-3480 (Print)}, doi = {10.1002/nbm.4656}, pages = {1 -- 17}, year = {2022}, abstract = {In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.}, language = {en} } @article{SchulteTiggesFoersterNikolovskietal.2022, author = {Schulte-Tigges, Joschua and F{\"o}rster, Marco and Nikolovski, Gjorgji and Reke, Michael and Ferrein, Alexander and Kaszner, Daniel and Matheis, Dominik and Walter, Thomas}, title = {Benchmarking of various LiDAR sensors for use in self-driving vehicles in real-world environments}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22197146}, pages = {20 Seiten}, year = {2022}, abstract = {Abstract In this paper, we report on our benchmark results of the LiDAR sensors Livox Horizon, Robosense M1, Blickfeld Cube, Blickfeld Cube Range, Velodyne Velarray H800, and Innoviz Pro. The idea was to test the sensors in different typical scenarios that were defined with real-world use cases in mind, in order to find a sensor that meet the requirements of self-driving vehicles. For this, we defined static and dynamic benchmark scenarios. In the static scenarios, both LiDAR and the detection target do not move during the measurement. In dynamic scenarios, the LiDAR sensor was mounted on the vehicle which was driving toward the detection target. We tested all mentioned LiDAR sensors in both scenarios, show the results regarding the detection accuracy of the targets, and discuss their usefulness for deployment in self-driving cars.}, language = {en} } @article{CollPeralesSchulteTiggesRondinoneetal.2022, author = {Coll-Perales, Baldomero and Schulte-Tigges, Joschua and Rondinone, Michele and Gozalvez, Javier and Reke, Michael and Matheis, Dominik and Walter, Thomas}, title = {Prototyping and evaluation of infrastructure-assisted transition of control for cooperative automated vehicles}, series = {IEEE Transactions on Intelligent Transportation Systems}, volume = {23}, journal = {IEEE Transactions on Intelligent Transportation Systems}, number = {7}, publisher = {IEEE}, issn = {1524-9050 (Print)}, doi = {10.1109/TITS.2021.3061085}, pages = {6720 -- 6736}, year = {2022}, abstract = {Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of the driving environment. If the driver fails to get back the control in a limited time, a Minimum Risk Maneuver (MRM) is executed to bring the vehicle into a safe state (e.g., decelerating to full stop). The execution of ToCs requires some time and can cause traffic disruption and safety risks that increase if several vehicles execute ToCs/MRMs at similar times and in the same area. This study proposes to use novel C-ITS traffic management measures where the infrastructure exploits V2X communications to assist Connected and Automated Vehicles (CAVs) in the execution of ToCs. The infrastructure can suggest a spatial distribution of ToCs, and inform vehicles of the locations where they could execute a safe stop in case of MRM. This paper reports the first field operational tests that validate the feasibility and quantify the benefits of the proposed infrastructure-assisted ToC and MRM management. The paper also presents the CAV and roadside infrastructure prototypes implemented and used in the trials. The conducted field trials demonstrate that infrastructure-assisted traffic management solutions can reduce safety risks and traffic disruptions.}, language = {en} }