@article{JildehKirchnerBaltesetal.2019, author = {Jildeh, Zaid B. and Kirchner, Patrick and Baltes, Klaus and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide - numerical modeling and experimental results}, series = {International Journal of Heat and Mass Transfer}, volume = {143}, journal = {International Journal of Heat and Mass Transfer}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0017-9310}, doi = {10.1016/j.ijheatmasstransfer.2019.118519}, pages = {Article number 118519}, year = {2019}, abstract = {Hydrogen peroxide (H2O2) is a typical surface sterilization agent for packaging materials used in the pharmaceutical, food and beverage industries. We use the finite-elements method to analyze the conceptual design of an in-line thermal evaporation unit to produce a heated gas mixture of air and evaporated H2O2 solution. For the numerical model, the required phase-transition variables of pure H2O2 solution and of the aerosol mixture are acquired from vapor-liquid equilibrium (VLE) diagrams derived from vapor-pressure formulations. This work combines homogeneous single-phase turbulent flow with heat-transfer physics to describe the operation of the evaporation unit. We introduce the apparent heat-capacity concept to approximate the non-isothermal phase-transition process of the H2O2-containing aerosol. Empirical and analytical functions are defined to represent the temperature- and pressure-dependent material properties of the aqueous H2O2 solution, the aerosol and the gas mixture. To validate the numerical model, the simulation results are compared to experimental data on the heating power required to produce the gas mixture. This shows good agreement with the deviations below 10\%. Experimental observations on the formation of deposits due to the evaporation of stabilized H2O2 solution fits the prediction made from simulation results.}, language = {en} } @article{TurlybekulyPogrebnjakSukhodubetal.2019, author = {Turlybekuly, Amanzhol and Pogrebnjak, Alexander and Sukhodub, L. F. and Sukhodub, Liudmyla B. and Kistaubayeva, A. S. and Savitskaya, Irina and Shokatayeva, D. H. and Bondar, Oleksandr V. and Shaimardanov, Z. K. and Plotnikov, Sergey V. and Shaimardanova, B. H. and Digel, Ilya}, title = {Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in Alginate matrix}, series = {Materials Science and Engineering C}, volume = {104}, journal = {Materials Science and Engineering C}, number = {Article number 109965}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.msec.2019.109965}, year = {2019}, language = {en} } @article{WerkhausenCroninAlbrachtetal.2019, author = {Werkhausen, Amelie and Cronin, Neil J. and Albracht, Kirsten and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R.}, title = {Distinct muscle-tendon interaction during running at different speeds and in different loading conditions}, series = {Journal of Applied Physiology}, volume = {127}, journal = {Journal of Applied Physiology}, number = {1}, issn = {1522-1601}, doi = {10.1152/japplphysiol.00710.2018}, pages = {246 -- 253}, year = {2019}, language = {en} } @article{QuittmannAbelAlbrachtetal.2019, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Str{\"u}der, Heiko K.}, title = {Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants}, series = {Sports Biomechanics}, journal = {Sports Biomechanics}, number = {Article in press}, publisher = {Taylor \& Francis}, address = {London}, issn = {1752-6116}, doi = {10.1080/14763141.2019.1593496}, year = {2019}, language = {en} } @incollection{SchoeningWagnerPoghossianetal.2018, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Poghossian, Arshak and Miyamoto, K.I. and Werner, C.F. and Krause, S. and Yoshinobu, T.}, title = {Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {9780128097397}, pages = {295 -- 308}, year = {2018}, language = {en} } @article{CapriMorsianiSantoroetal.2019, author = {Capri, Miriam and Morsiani, Cristina and Santoro, Aurelia and Moriggi, Manuela and Conte, Maria and Martucci, Morena and Bellavista, Elena and Fabbri, Cristina and Giampieri, Enrico and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Canepari, Monica and Longa, Emanuela and Giulio, Irene Di and Bottinelli, Roberto and Cerretelli, Paolo and Salvioli, Stefano and Gelfi, Cecilia and Franceschi, Claudio and Narici, Marco and Rittweger, J{\"o}rn}, title = {Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting}, series = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, volume = {33}, journal = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, number = {4}, doi = {10.1096/fj.201801625R}, pages = {5168 -- 5180}, year = {2019}, language = {en} } @article{IkenBronderGoretzkietal.2019, author = {Iken, Heiko and Bronder, Thomas and Goretzki, Alexander and Kriesel, Jana and Ahlborn, Kristina and Gerlach, Frank and Vonau, Winfried and Zander, Willi and Schubert, J{\"u}rgen and Sch{\"o}ning, Michael Josef}, title = {Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900114}, pages = {1 -- 8}, year = {2019}, language = {en} } @article{DantismRoehlenSelmeretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Selmer, Thorsten and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system}, series = {Biosensors and Bioelectronics}, volume = {139}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2019.111332}, pages = {Artikel 111332}, year = {2019}, language = {en} } @article{GerhardsSanderZivkovicetal.2020, author = {Gerhards, Michael and Sander, Volker and Zivkovic, Miroslav and Belloum, Adam and Bubak, Marian}, title = {New approach to allocation planning of many-task workflows on clouds}, series = {Concurrency and Computation: Practice and Experience}, volume = {32}, journal = {Concurrency and Computation: Practice and Experience}, number = {2 Article e5404}, publisher = {Wiley}, address = {Chichester}, issn = {1532-0634}, doi = {10.1002/cpe.5404}, pages = {1 -- 16}, year = {2020}, abstract = {Experience has shown that a priori created static resource allocation plans are vulnerable to runtime deviations and hence often become uneconomic or highly exceed a predefined soft deadline. The assumption of constant task execution times during allocation planning is even more unlikely in a cloud environment where virtualized resources vary in performance. Revising the initially created resource allocation plan at runtime allows the scheduler to react on deviations between planning and execution. Such an adaptive rescheduling of a many-task application workflow is only feasible, when the planning time can be handled efficiently at runtime. In this paper, we present the static low-complexity resource allocation planning algorithm (LCP) applicable to efficiently schedule many-task scientific application workflows on cloud resources of different capabilities. The benefits of the presented algorithm are benchmarked against alternative approaches. The benchmark results show that LCP is not only able to compete against higher complexity algorithms in terms of planned costs and planned makespan but also outperforms them significantly by magnitudes of 2 to 160 in terms of required planning time. Hence, LCP is superior in terms of practical usability where low planning time is essential such as in our targeted online rescheduling scenario.}, language = {en} } @article{KodomskoiKotliarSchroederetal.2019, author = {Kodomskoi, Leonid and Kotliar, Konstantin and Schr{\"o}der, Andreas and Weiss, Michael and Hille, Konrad}, title = {Suture-Probe Canaloplasty as an Alternative to Canaloplasty using the iTrack™ Microcatheter}, series = {Journal of Glaucoma}, journal = {Journal of Glaucoma}, number = {Epub ahead of print}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1057-0829}, doi = {10.1097/IJG.0000000000001321}, year = {2019}, language = {en} } @inproceedings{SiebigterothKraftSchmidtsetal.2019, author = {Siebigteroth, Ines and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {A Study on Improving Corpus Creation by Pair Annotation}, series = {Proceedings of the Poster Session of the 2nd Conference on Language, Data and Knowledge (LDK-PS 2019)}, booktitle = {Proceedings of the Poster Session of the 2nd Conference on Language, Data and Knowledge (LDK-PS 2019)}, issn = {1613-0073}, pages = {40 -- 44}, year = {2019}, language = {en} } @inproceedings{BlumAlbannaBenninghausetal.2019, author = {Blum, Yannik and Albanna, Walid and Benninghaus, Anne and Kotliar, Konstantin}, title = {Vasomotion in retinal vessels of patients presenting post hemorrhagic hydrocephalus following subarachnoid hemorrhage}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {38 -- 39}, year = {2019}, abstract = {Clearance of blood components and fluid drainage play a crucial role in subarachnoid hemorrhage (SAH) and post hemorrhagic hydrocephalus (PHH). With the involvement of interstitial fluid (ISF) and cerebrospinal fluid (CSF), two pathways for the clearance of fluid and solutes in the brain are proposed. Starting at the level of capillaries, flow of ISF follows along the basement membranes in the walls of cerebral arteries out of the parenchyma to drain into the lymphatics and CSF [1]-[3]. Conversely, it is shown that CSF enters the parenchyma between glial and pial basement membranes of penetrating arteries [4]-[6]. Nevertheless, the involved structures and the contribution of either flow pathway to fluid balance between the subarachnoid space and interstitial space remains controversial. Low frequency oscillations in vascular tone are referred to as vasomotion and corresponding vasomotion waves are modeled as the driving force for flow of ISF out of the parenchyma [7]. Retinal vessel analysis (RVA) allows non-invasive measurement of retinal vessel vasomotion with respect to diameter changes [8]. Thus, the aim of the study is to investigate vasomotion in RVA signals of SAH and PHH patients.}, language = {en} } @inproceedings{ZingsheimGrimmerOrtneretal.2019, author = {Zingsheim, Jonas and Grimmer, Timo and Ortner, Marion and Schmaderer, Christoph and Hauser, Christine and Kotliar, Konstantin}, title = {Recognition of subjects with mild cognitive impairment (MCI) by the use of retinal arterial vessels.}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {36 -- 37}, year = {2019}, language = {en} } @inproceedings{AzarDigel2019, author = {Azar, Fouad and Digel, Ilya}, title = {Utilization of fluorescence spectroscopy and neural networks in clinical analysis}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {40 -- 41}, year = {2019}, abstract = {Fluorescence topography of human urine in combination with learning algorithms can provide a variant pattern recognition method in analytical clinical chemistry and, eventually, diagnosis.}, language = {en} } @inproceedings{BayerHeschelerArtmannetal.2019, author = {Bayer, Robin and Hescheler, J{\"u}rgen and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Treating arterial hypertension in a cell culture well}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {5 -- 6}, year = {2019}, abstract = {Hypertension describes the pathological increase of blood pressure, which is most commonly associated with the increase of vascular wall stiffness [1]. Referring to the "Deutsche Bluthochdruck Liga" this pathology shows a growing trend in our aging society. In order to find novel pharmacological and probably personalized treatments, we want to present a functional approach to study biomechanical properties of a human aortic vascular model. In this method review we will give an overview of recent studies which were carried out with the CellDrum technology [2] and underline the added value to already existing standard procedures known from the field of physiology. Herein described CellDrum technology is a system to measure functional mechanical properties of cell monolayers and thin tissue constructs in-vitro. Additionally, the CellDrum enables to elucidate the mechanical response of cells to pharmacological drugs, toxins and vasoactive agents. Due to its highly flexible polymer support, cells can also be mechanically stimulated by steady and cyclic biaxial stretching.}, language = {en} } @article{KoppSchmeetsGosauetal.2019, author = {Kopp, Alexander and Schmeets, Ralf and Gosau, Martin and Friedrich, Reinhard E. and Fuest, Sandra and Behbahani, Mehdi and Barbeck, Mike and Rutkowski, Rico and Burg, Simon and Kluwe, Lan and Henningsen, Anders}, title = {Production and Characterization of Porous Fibroin Scaffolds for Regenerative Medical Application}, series = {In Vivo}, volume = {33}, journal = {In Vivo}, number = {3}, issn = {1791-7549}, doi = {10.21873/invivo.11536}, pages = {757 -- 762}, year = {2019}, language = {en} } @article{Stulpe2019, author = {Stulpe, Werner}, title = {Aspects of the Quantum-Classical Connection Based on Statistical Maps}, series = {Foundations of Physics}, volume = {49}, journal = {Foundations of Physics}, number = {6}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s10701-019-00269-9}, pages = {677 -- 692}, year = {2019}, language = {en} } @phdthesis{Geenen2013, author = {Geenen, Eva-Maria}, title = {Studies of Epstein-Barr virus EBNA2 and its interactions with host cell factors}, publisher = {Universit{\´e} de Grenoble}, address = {Grenoble}, pages = {125 S.}, year = {2013}, language = {en} } @inproceedings{RamanJungHorvathetal.2019, author = {Raman, Aravind Hariharan and Jung, Alexander and Horv{\´a}th, Andr{\´a}s and Becker, Nadine and Staat, Manfred}, title = {Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {10 -- 11}, year = {2019}, abstract = {Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich).}, language = {en} } @inproceedings{HunkerJungGossmannetal.2019, author = {Hunker, Jan and Jung, Alexander and Goßmann, Matthias and Linder, Peter and Staat, Manfred}, title = {Development of a tool to analyze the conduction speed in microelectrode array measurements of cardiac tissue}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {7 -- 8}, year = {2019}, abstract = {The discovery of human induced pluripotent stem cells reprogrammed from somatic cells [1] and their ability to differentiate into cardiomyocytes (hiPSC-CMs) has provided a robust platform for drug screening [2]. Drug screenings are essential in the development of new components, particularly for evaluating the potential of drugs to induce life-threatening pro-arrhythmias. Between 1988 and 2009, 14 drugs have been removed from the market for this reason [3]. The microelectrode array (MEA) technique is a robust tool for drug screening as it detects the field potentials (FPs) for the entire cell culture. Furthermore, the propagation of the field potential can be examined on an electrode basis. To analyze MEA measurements in detail, we have developed an open-source tool.}, language = {en} }