@article{AlexopoulosHoffschmidt2017, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard}, title = {Advances in solar tower technology}, series = {Wiley interdisciplinary reviews : Energy and Environment : WIREs}, volume = {6}, journal = {Wiley interdisciplinary reviews : Energy and Environment : WIREs}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {2041-840X}, doi = {10.1002/wene.217}, pages = {1 -- 19}, year = {2017}, language = {en} } @inproceedings{BaeckerKochGeigeretal.2016, author = {B{\"a}cker, Matthias and Koch, C. and Geiger, F. and Eber, F. and Gliemann, H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier}, series = {Procedia Engineering}, volume = {Vol. 168}, booktitle = {Procedia Engineering}, issn = {1877-7058}, doi = {10.1016/j.proeng.2016.11.228}, pages = {618 -- 621}, year = {2016}, language = {en} } @inproceedings{SchleupenEngemannBagherietal.2017, author = {Schleupen, Josef and Engemann, Heiko and Bagheri, Mohsen and Kallweit, Stephan and Dahmann, Peter}, title = {Developing a climbing maintenance robot for tower and rotor blade service of wind turbines}, series = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, booktitle = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-49058-8}, doi = {10.1007/978-3-319-49058-8_34}, pages = {310 -- 319}, year = {2017}, language = {en} } @inproceedings{ValeroBung2016, author = {Valero, Daniel and Bung, Daniel Bernhard}, title = {Interfacial velocity estimation in highly aerated stepped spillway flows with a single tip fibre optical probe and Artificial Neural Networks}, series = {6th IAHR International Junior Researcher and Engineer Workshop on Hydraulic Structures, May 30th to June 1st 2016. L{\"u}beck, Germany}, booktitle = {6th IAHR International Junior Researcher and Engineer Workshop on Hydraulic Structures, May 30th to June 1st 2016. L{\"u}beck, Germany}, doi = {10.15142/T3Q590}, pages = {13 Seiten}, year = {2016}, abstract = {Air-water flows can be found in different engineering applications: from nuclear engineering to huge hydraulic structures. In this paper, a single tip fibre optical probe has been used to record high frequency (over 1 MHz) phase functions at different locations of a stepped spillway. These phase functions have been related to the interfacial velocities by means of Artificial Neural Networks (ANN) and the measurements of a classical double tip conductivity probe. Special attention has been put to the input selection and the ANN dimensions. Finally, ANN have shown to be able to link the signal rising times and plateau shapes to the air-water interfacial velocity.}, language = {en} } @article{FunkeBeckmannKeinzetal.2016, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-NOx-Micromix-Combustion}, series = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4975-0}, doi = {10.1115/GT2016-56430}, pages = {12}, year = {2016}, abstract = {The Dry-Low-NOₓ (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOₓ emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOₓ emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H₂-CO) numerical analyses based on a skeletal H₂/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model.}, language = {en} } @article{AyedKustererFunkeetal.2016, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan}, title = {CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities}, series = {American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)}, volume = {26}, journal = {American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)}, number = {3}, publisher = {GSSRR}, issn = {2313-4402}, pages = {290 -- 303}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of Hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. Thus, the development of DLN combustion technologies is an essential and challenging task for the future of Hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel has been developed to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flash-back and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. The Micromix Combustion technology has been already proven experimentally and numerically for pure Hydrogen fuel operation at different energy density levels. The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NOx emission and to identify the most relevant design parameters, aiming to provide a physical understanding of the Micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application. The study reveals great optimization potential of the Micromix Combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the Micromix burners and to integrate this technology in industrial gas turbines.}, language = {en} } @article{FunkeKeinzKustereretal.2016, author = {Funke, Harald and Keinz, Jan and Kusterer, Karsten and Ayed, Anis Haj and Kazari, Masahide and Kitajima, Junichi and Horikawa, Atsushi and Okada, Kunio}, title = {Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {9}, journal = {Journal of Thermal Science and Engineering Applications}, number = {2}, publisher = {ASME}, address = {New York, NY}, issn = {1948-5093}, doi = {10.1115/1.4034849}, pages = {021001 -- 021001-10}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation.}, language = {en} } @inproceedings{ValeroBungOertel2016, author = {Valero, Daniel and Bung, Daniel Bernhard and Oertel, M.}, title = {Turbulent dispersion in bounded horizontal jets : RANS capabilities and physical modeling comparison}, series = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, booktitle = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, editor = {Dewals, Benjamin}, publisher = {CRC Press}, isbn = {978-1-138-02977-4}, doi = {10.1201/b21902-13}, pages = {49 -- 55}, year = {2016}, language = {en} } @inproceedings{BungValero2016, author = {Bung, Daniel Bernhard and Valero, Daniel}, title = {Image processing techniques for velocity estimation in highly aerated flows: bubble image velocimetry vs. optical flow}, series = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, booktitle = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, editor = {Dewals, Benjamin}, publisher = {CRC Press}, isbn = {978-1-138-02977-4}, doi = {10.1201/b21902-31}, pages = {151 -- 157}, year = {2016}, language = {en} } @inproceedings{KerpenBungValeroetal.2016, author = {Kerpen, Nils B. and Bung, Daniel Bernhard and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, booktitle = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, pages = {6 Seiten}, year = {2016}, language = {en} } @article{BungValero2016, author = {Bung, Daniel Bernhard and Valero, Daniel}, title = {Optical flow estimation in aerated flows}, series = {Journal of Hydraulic Research}, volume = {54}, journal = {Journal of Hydraulic Research}, number = {5}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/00221686.2016.1173600}, pages = {575 -- 580}, year = {2016}, abstract = {Optical flow estimation is known from Computer Vision where it is used to determine obstacle movements through a sequence of images following an assumption of brightness conservation. This paper presents the first study on application of the optical flow method to aerated stepped spillway flows. For this purpose, the flow is captured with a high-speed camera and illuminated with a synchronized LED light source. The flow velocities, obtained using a basic Horn-Schunck method for estimation of the optical flow coupled with an image pyramid multi-resolution approach for image filtering, compare well with data from intrusive conductivity probe measurements. Application of the Horn-Schunck method yields densely populated flow field data sets with velocity information for every pixel. It is found that the image pyramid approach has the most significant effect on the accuracy compared to other image processing techniques. However, the final results show some dependency on the pixel intensity distribution, with better accuracy found for grey values between 100 and 150.}, language = {en} } @inproceedings{GoettscheKornAmato2015, author = {G{\"o}ttsche, Joachim and Korn, Michael and Amato, Alexandre}, title = {The Passivhaus concept for the Arabian Peninsula - An energetic-economical evaluation considering the thermal comfort}, series = {QScience Proceedings: Vol 2015}, booktitle = {QScience Proceedings: Vol 2015}, doi = {10.5339/qproc.2015.qgbc.38}, pages = {8 Seiten}, year = {2015}, abstract = {The Passivhaus building standard is a concept developed for the realization of energy-efficient and economical buildings with a simultaneous high utilization comfort under European climate conditions. Major elements of the Passivhaus concept are a high thermal insulation of the external walls, the use of heat and/or solar shading glazing as well as an airtight building envelope in combination with energy-efficient technical building installations and heating or cooling generators, such as an efficient energy-recovery in the building air-conditioning. The objective of this research project is the inquiry to determine the parameters or constraints under which the Passivhaus concept can be implemented under the arid climate conditions in the Arabian Peninsula to achieve an energy-efficient and economical building with high utilization comfort. In cooperation between the Qatar Green Building Council (QGBC), Barwa Real Estate (BRE) and Kahramaa the first Passivhaus was constructed in Qatar and on the Arabian Peninsula in 2013. The Solar-Institut J{\"u}lich of Aachen University of Applied Science supports the Qatar Green Building Council with a dynamic building and equipment simulation of the Passivhaus and the neighbouring reference building. This includes simulation studies with different component configurations for the building envelope and different control strategies for heating or cooling systems as well as the air conditioning of buildings to find an energetic-economical optimum. Part of these analyses is the evaluation of the energy efficiency of the used energy recovery system in the Passivhaus air-conditioning and identification of possible energy-saving effects by the use of a bypass function integrated in the heat exchanger. In this way it is expected that on an annual basis the complete electricity demand of the building can be covered by the roof-integrated PV generator.}, language = {en} } @article{AlbrachtArampatzis2006, author = {Albracht, Kirsten and Arampatzis, Adamantios}, title = {Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy}, series = {Biological Cybernetics}, volume = {95}, journal = {Biological Cybernetics}, number = {1}, issn = {1432-0770}, doi = {10.1007/s00422-006-0070-z}, pages = {87 -- 96}, year = {2006}, language = {en} } @article{ArampatzisKaramanidisAlbracht2007, author = {Arampatzis, Adamantios and Karamanidis, Kiros and Albracht, Kirsten}, title = {Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude}, series = {Journal of Experimental Biology}, volume = {210}, journal = {Journal of Experimental Biology}, number = {15}, issn = {0022-0949}, doi = {10.1242/jeb.003814}, pages = {2743 -- 2753}, year = {2007}, language = {en} } @article{AlbrachtArampatzisBaltzopoulos2008, author = {Albracht, Kirsten and Arampatzis, A. and Baltzopoulos, V.}, title = {Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo}, series = {Journal of Biomechanics}, volume = {41}, journal = {Journal of Biomechanics}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2008.04.020}, pages = {2211 -- 2218}, year = {2008}, language = {en} } @article{ArampatzisKaramanidisMademlietal.2009, author = {Arampatzis, Adamantios and Karamanidis, Kiros and Mademli, Lida and Albracht, Kirsten}, title = {Plasticity of the human tendon to short and long-term mechanical loading}, series = {Exercise and Sport Sciences Reviews}, volume = {37}, journal = {Exercise and Sport Sciences Reviews}, number = {2}, issn = {1538-3008}, doi = {10.1097/JES.0b013e31819c2e1d}, pages = {66 -- 72}, year = {2009}, language = {en} } @article{AggeloussisGiannakouAlbrachtetal.2010, author = {Aggeloussis, Nickos and Giannakou, Erasmia and Albracht, Kirsten and Arampatzis, Adamantios}, title = {Reproducibility of fascicle length and pennation angle of gastrocnemius medialis in human gait in vivo}, series = {Gait and Posture}, volume = {31}, journal = {Gait and Posture}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2009.08.249}, pages = {73 -- 77}, year = {2010}, abstract = {The purpose of the current study was to examine the reproducibility of fascicle length and pennation angle of gastrocnemius medialis while human walking. To the best of our knowledge, this is the first study of the reproducibility of fascicle length and pennation angle of gastrocnemius medialis in vivo during human gait. Twelve males performed 10 gait trials on a treadmill, in 2 separate days. B-mode ultrasonography, with the ultrasound probe firmly adjusted in the transverse and frontal planes using a special cast, was used to measure the fascicle length and the pennation angle of the gastrocnemius medialis (GM). A Vicon 624 system with three cameras operating at 120 Hz was also used to record the ankle and knee joint angles. The results showed that measurements of fascicle length and pennation angle showed high reproducibility during the gait cycle, both within the same day and between different days. Moreover, the root mean square differences between the repeated waveforms of both variables were very small, compared with their ranges (fascicle length: RMS = ∼3 mm, range: 38-63 mm; pennation angle: RMS = ∼1.5°, range: 22-32°). However, their reproducibility was lower compared to the joint angles. It was found that representative data have to be derived by a wide number of gait trials (fascicle length ∼six trials, pennation angle more than 10 trials), to assure the reliability of the fascicle length and pennation angle in human gait.}, language = {en} } @article{ArampatzisPeperBierbaumetal.2010, author = {Arampatzis, Adamantios and Peper, Andreas and Bierbaum, Stefanie and Albracht, Kirsten}, title = {Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain}, series = {Journal of Biomechanics}, volume = {43}, journal = {Journal of Biomechanics}, number = {16}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2010.08.014}, pages = {3073 -- 3079}, year = {2010}, abstract = {The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9±2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97±0.47\%), and the other leg at high tendon strain magnitude (4.72±1.08\%) of similar frequency (0.5 Hz, 1 s loading, 1 s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3 s loading, 3 s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon-aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon-aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P>0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses.}, language = {en} } @article{KaramanidisAlbrachtBraunsteinetal.2011, author = {Karamanidis, Kiros and Albracht, Kirsten and Braunstein, Bjoern and Catala, Maria Moreno and Goldmann, Jan-Peter and Br{\"u}ggemann, Gert-Peter}, title = {Lower leg musculoskeletal geometry and sprint performance}, series = {Gait and Posture}, volume = {34}, journal = {Gait and Posture}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2011.03.009}, pages = {138 -- 141}, year = {2011}, abstract = {The purpose of this study was to investigate whether sprint performance is related to lower leg musculoskeletal geometry within a homogeneous group of highly trained 100-m sprinters. Using a cluster analysis, eighteen male sprinters were divided into two groups based on their personal best (fast: N = 11, 10.30 ± 0.07 s; slow: N = 7, 10.70 ± 0.08 s). Calf muscular fascicle arrangement and Achilles tendon moment arms (calculated by the gradient of tendon excursion versus ankle joint angle) were analyzed for each athlete using ultrasonography. Achilles tendon moment arm, foot and ankle skeletal geometry, fascicle arrangement as well as the ratio of fascicle length to Achilles tendon moment arm showed no significant (p > 0.05) correlation with sprint performance, nor were there any differences in the analyzed musculoskeletal parameters between the fast and slow sprinter group. Our findings provide evidence that differences in sprint ability in world-class athletes are not a result of differences in the geometrical design of the lower leg even when considering both skeletal and muscular components.}, language = {en} } @article{AlbrachtArampatzis2013, author = {Albracht, Kirsten and Arampatzis, Adamantios}, title = {Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans}, series = {European Journal of Applied Physiology}, volume = {113}, journal = {European Journal of Applied Physiology}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1439-6327}, doi = {10.1007/s00421-012-2585-4}, pages = {1605 -- 1615}, year = {2013}, language = {en} }