@article{LenzKahmannBehbahanietal.2022, author = {Lenz, Maximilian and Kahmann, Stephanie Lucina and Behbahani, Mehdi and Pennig, Lenhard and Hackl, Michael and Leschinger, Tim and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Influence of rotator cuff preload on fracture configuration in proximal humerus fractures: a proof of concept for fracture simulation}, series = {Archives of Orthopaedic and Trauma Surgery}, journal = {Archives of Orthopaedic and Trauma Surgery}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1434-3916}, doi = {10.1007/s00402-022-04471-9}, year = {2022}, abstract = {Introduction In regard of surgical training, the reproducible simulation of life-like proximal humerus fractures in human cadaveric specimens is desirable. The aim of the present study was to develop a technique that allows simulation of realistic proximal humerus fractures and to analyse the influence of rotator cuff preload on the generated lesions in regards of fracture configuration. Materials and methods Ten cadaveric specimens (6 left, 4 right) were fractured using a custom-made drop-test bench, in two groups. Five specimens were fractured without rotator cuff preload, while the other five were fractured with the tendons of the rotator cuff preloaded with 2 kg each. The humeral shaft and the shortened scapula were potted. The humerus was positioned at 90° of abduction and 10° of internal rotation to simulate a fall on the elevated arm. In two specimens of each group, the emergence of the fractures was documented with high-speed video imaging. Pre-fracture radiographs were taken to evaluate the deltoid-tuberosity index as a measure of bone density. Post-fracture X-rays and CT scans were performed to define the exact fracture configurations. Neer's classification was used to analyse the fractures. Results In all ten cadaveric specimens life-like proximal humerus fractures were achieved. Two III-part and three IV-part fractures resulted in each group. The preloading of the rotator cuff muscles had no further influence on the fracture configuration. High-speed videos of the fracture simulation revealed identical fracture mechanisms for both groups. We observed a two-step fracture mechanism, with initial impaction of the head segment against the glenoid followed by fracturing of the head and the tuberosities and then with further impaction of the shaft against the acromion, which lead to separation of the tuberosities. Conclusion A high energetic axial impulse can reliably induce realistic proximal humerus fractures in cadaveric specimens. The preload of the rotator cuff muscles had no influence on initial fracture configuration. Therefore, fracture simulation in the proximal humerus is less elaborate. Using the presented technique, pre-fractured specimens are available for real-life surgical education.}, language = {en} } @article{MalinowskiFournierHorbachetal.2022, author = {Malinowski, Daniel and Fournier, Yvan and Horbach, Andreas and Frick, Michael and Magliani, Mirko and Kalverkamp, Sebastian and Hildinger, Martin and Spillner, Jan and Behbahani, Mehdi and Hima, Flutura}, title = {Computational fluid dynamics analysis of endoluminal aortic perfusion}, series = {Perfusion}, volume = {0}, journal = {Perfusion}, number = {0}, publisher = {Sage}, address = {London}, issn = {1477-111X}, doi = {10.1177/02676591221099809}, pages = {1 -- 8}, year = {2022}, abstract = {Introduction: In peripheral percutaneous (VA) extracorporeal membrane oxygenation (ECMO) procedures the femoral arteries perfusion route has inherent disadvantages regarding poor upper body perfusion due to watershed. With the advent of new long flexible cannulas an advancement of the tip up to the ascending aorta has become feasible. To investigate the impact of such long endoluminal cannulas on upper body perfusion, a Computational Fluid Dynamics (CFD) study was performed considering different support levels and three cannula positions. Methods: An idealized literature-based- and a real patient proximal aortic geometry including an endoluminal cannula were constructed. The blood flow was considered continuous. Oxygen saturation was set to 80\% for the blood coming from the heart and to 100\% for the blood leaving the cannula. 50\% and 90\% venoarterial support levels from the total blood flow rate of 6 l/min were investigated for three different positions of the cannula in the aortic arch. Results: For both geometries, the placement of the cannula in the ascending aorta led to a superior oxygenation of all aortic blood vessels except for the left coronary artery. Cannula placements at the aortic arch and descending aorta could support supra-aortic arteries, but not the coronary arteries. All positions were able to support all branches with saturated blood at 90\% flow volume. Conclusions: In accordance with clinical observations CFD analysis reveals, that retrograde advancement of a long endoluminal cannula can considerably improve the oxygenation of the upper body and lead to oxygen saturation distributions similar to those of a central cannulation.}, language = {en} } @inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit}, series = {25th International Symposium on Space Flight Dynamics ISSFD}, booktitle = {25th International Symposium on Space Flight Dynamics ISSFD}, pages = {1 -- 15}, year = {2015}, abstract = {Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail}, language = {en} } @incollection{BorggrafeOhndorfDachwaldetal.2012, author = {Borggrafe, Andreas and Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang}, title = {Analysis of interplanetary solar sail trajectories with attitude dynamics}, series = {Dynamics and Control of Space Systems 2012}, booktitle = {Dynamics and Control of Space Systems 2012}, publisher = {Univelt Inc}, address = {San Diego}, isbn = {978-0-87703-587-9}, pages = {1553 -- 1569}, year = {2012}, abstract = {We present a new approach to the problem of optimal control of solar sails for low-thrust trajectory optimization. The objective was to find the required control torque magnitudes in order to steer a solar sail in interplanetary space. A new steering strategy, controlling the solar sail with generic torques applied about the spacecraft body axes, is integrated into the existing low-thrust trajectory optimization software InTrance. This software combines artificial neural networks and evolutionary algorithms to find steering strategies close to the global optimum without an initial guess. Furthermore, we implement a three rotational degree-of-freedom rigid-body attitude dynamics model to represent the solar sail in space. Two interplanetary transfers to Mars and Neptune are chosen to represent typical future solar sail mission scenarios. The results found with the new steering strategy are compared to the existing reference trajectories without attitude dynamics. The resulting control torques required to accomplish the missions are investigated, as they pose the primary requirements to a real on-board attitude control system.}, language = {en} } @inproceedings{KoenigWolf2016, author = {K{\"o}nig, Johannes Alexander and Wolf, Martin R.}, title = {A new definition of competence developing games - and a framework to assess them}, series = {ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions}, booktitle = {ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions}, isbn = {978-1-61208-468-8}, pages = {95 -- 97}, year = {2016}, abstract = {There are different types of games that try to make use of the motivation of a gaming situation in learning contexts. This paper introduces the new terminology 'Competence Developing Game' (CDG) as an umbrella term for all games with this intention. Based on this new terminology, an assessment framework has been developed and validated in scope of an empirical study. Now, all different types of CDGs can be evaluated according to a defined and uniform set of assessment criteria and, thus, are comparable according to their characteristics and effectiveness.}, language = {en} } @inproceedings{KoenigWolf2018, author = {K{\"o}nig, Johannes Alexander and Wolf, Martin R.}, title = {Cybersecurity awareness training provided by the competence developing game GHOST}, series = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, booktitle = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, isbn = {978-1-61208-616-3}, pages = {81 -- 87}, year = {2018}, abstract = {This paper introduces a Competence Developing Game (CDG) for the purpose of a cybersecurity awareness training for businesses. The target audience will be discussed in detail to understand their requirements. It will be explained why and how a mix of business simulation and serious game meets these stakeholder requirements. It will be shown that a tablet and touchscreen based approach is the most suitable solution. In addition, an empirical study will be briefly presented. The study was carried out to examine how an interaction system for a 3D-tablet based CDG has to be designed, to be manageable for non-game experienced employees. Furthermore, it will be explained which serious content is necessary for a Cybersecurity awareness training CDG and how this content is wrapped in the game}, language = {en} } @inproceedings{DowidatKoenigWolf2017, author = {Dowidat, Linda and K{\"o}nig, Johannes Alexander and Wolf, Martin R.}, title = {The motivational competence developing game framework}, series = {Mensch und Computer 2017 - Tagungsband}, booktitle = {Mensch und Computer 2017 - Tagungsband}, publisher = {Gesellschaft f{\"u}r Informatik e.V.}, address = {Regensburg}, doi = {10.18420/muc2017-mci-0130}, pages = {15 -- 26}, year = {2017}, abstract = {Competence Developing Games (CDGs) are a new concept of how to think about games with serious intentions. In order to emphasize on this topic, a new framework has been developed. It basically relies on learning and motivation theories. This 'motivational Competence Developing Game Framework' demonstrates how it is possible to use these theories in a CDG development process. The theoretical derivation and use of the framework is explained in this paper.}, language = {en} } @inproceedings{KoenigVoelkerWolf2018, author = {K{\"o}nig, Johannes Alexander and V{\"o}lker, Veronika and Wolf, Martin R.}, title = {The user-focused storybuilding framework for competence developing games - a design-framework considering the basics of an educational game's story}, series = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, booktitle = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, isbn = {978-1-61208-616-3}, pages = {98 -- 106}, year = {2018}, abstract = {During the development of a Competence Developing Game's (CDG) story it is indispensable to understand the target audience. Thereby, CDGs stories represent more than just the plot. The Story is about the Setting, the Characters and the Plot. As a toolkit to support the development of such a story, this paper introduces the UserFocused Storybuilding (short UFoS) Framework for CDGs. The Framework and its utilization will be explained, followed by a description of its development and derivation, including an empirical study. In addition, to simplify the Framework use regarding the CDG's target audience, a new concept of Nine Psychographic Player Types will be explained. This concept of Player Types provides an approach to handle the differences in between players during the UFoS Framework use. Thereby, this article presents a unique approach to the development of target group-differentiated CDGs stories.}, language = {en} } @inproceedings{DannenSchindelePruemmeretal.2022, author = {Dannen, Tammo and Schindele, Benedikt and Pr{\"u}mmer, Marcel and Arntz, Kristian and Bergs, Thomas}, title = {Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking}, series = {Procedia CIRP Leading manufacturing systems transformation - Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022}, volume = {107}, booktitle = {Procedia CIRP Leading manufacturing systems transformation - Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.05.188}, pages = {1539 -- 1544}, year = {2022}, abstract = {Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model's initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality.}, language = {en} } @inproceedings{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Usage of digital twins for gamification applications in manufacturing}, series = {Procedia CIRP Leading manufacturing systems transformation - Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022}, volume = {107}, booktitle = {Procedia CIRP Leading manufacturing systems transformation - Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.05.044}, pages = {675 -- 680}, year = {2022}, abstract = {Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers' actions. Game elements are selected according to the work task and users' preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting.}, language = {en} } @inproceedings{ChavezBermudezWollert2022, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link}, series = {2022 IEEE 18th International Conference on Factory Communication Systems (WFCS)}, booktitle = {2022 IEEE 18th International Conference on Factory Communication Systems (WFCS)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-6654-1086-1}, doi = {10.1109/WFCS53837.2022.9779176}, pages = {4 Seiten}, year = {2022}, abstract = {The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies.}, language = {en} } @inproceedings{GrundmannLangeDachwaldetal.2015, author = {Grundmann, Jan Thimo and Lange, Caroline and Dachwald, Bernd and Grimm, Christian and Koch, Aaron and Ulamec, Stephan}, title = {Small Spacecraft in Planetary Defence Related Applications-Capabilities, Constraints, Challenges}, series = {IEEE Aerospace Conference}, booktitle = {IEEE Aerospace Conference}, pages = {1 -- 18}, year = {2015}, abstract = {In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA's ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos.}, language = {en} } @inproceedings{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple NEA rendezvous mission: Solar sailing options}, series = {Fourth International Symposium on Solar Sailing}, booktitle = {Fourth International Symposium on Solar Sailing}, pages = {1 -- 11}, year = {2017}, abstract = {The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58\% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user.}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, D. and Herique, A. and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin R. and Mikschl, Tobias and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettenmeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Viavattene, Giulia and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Responsive exploration and asteroid characterization through integrated solar sail and lander development using small spacecraft technologies}, series = {IAA Planetary Defense Conference}, booktitle = {IAA Planetary Defense Conference}, year = {2019}, abstract = {In parallel to the evolution of the Planetary Defense Conference, the exploration of small solar system bodies has advanced from fast fly-bys on the sidelines of missions to the planets to the implementation of dedicated sample-return and in-situ analysis missions. Spacecraft of all sizes have landed, touch-and-go sampled, been gently beached, or impacted at hypervelocity on asteroid and comet surfaces. More have flown by close enough to image their surfaces in detail or sample their immediate environment, often as part of an extended or re-purposed mission. And finally, full-scale planetary defense experiment missions are in the making. Highly efficient low-thrust propulsion is increasingly applied beyond commercial use also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another development in the same years is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities. The on-going NASA OSIRIS-REx and JAXA HAYABUSA2 missions exemplify the trend as well as the upcoming NEA SCOUT mission or the landers MINERVA-II and MASCOT recently deployed on Ryugu. We outline likely as well as possible and efficient routes of continuation of all these developments towards a propellant-less and highly efficient class of spacecraft for small solar system body exploration: small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules, for all asteroid user communities -planetary science, planetary defence, and in-situ resource utilization. This projection builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)² solar sail at DLR Cologne and in the 20 years since. It draws on the background of extensive trajectory optimization studies, the qualified technology of the DLR GOSSAMER-1 deployment demonstrator, and the MASCOT asteroid lander. These enable 'now-term' as well as near-term hardware solutions, and thus responsive fast-paced development. Mission types directly applicable to planetary defense include: single and Multiple NEA Rendezvous ((M)NR) for mitigation precursor, target monitoring and deflection follow-up tasks; sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation; and deployable membrane based methods to modify the asteroid's properties or interact with it. The DLR-ESTEC GOSSAMER Roadmap initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery which demonstrate the capability of near-term solar sails to achieve NEA rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. For those mission types using separable payloads, such as SPO, (M)NR and RKI, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. These are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.}, language = {en} } @inproceedings{DachwaldBaturkinCoverstoneetal.2005, author = {Dachwald, Bernd and Baturkin, Volodymyr and Coverstone, Victoria and Diedrich, Ben and Garbe, Gregory and G{\"o}rlich, Marianne and Leipold, Manfred and Lura, Franz and Macdonald, Malcolm and McInnes, Colin and Mengali, Giovanni and Quarta, Alessandro and Rios-Reyes, Leonel and Scheeres, Daniel J. and Seboldt, Wolfgang and Wie, Bong}, title = {Potential effects of optical solar sail degredation on trajectory design}, series = {AAS/AIAA Astrodynamics Specialist}, booktitle = {AAS/AIAA Astrodynamics Specialist}, pages = {1 -- 23}, year = {2005}, abstract = {The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions.}, language = {en} } @inproceedings{LoebSchartnerDachwaldetal.2011, author = {Loeb, Horst W. and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {An Interstellar - Heliopause mission using a combination of solar/radioisotope electric propulsion}, series = {Presented at the 32nd International Electric Propulsion Conference}, booktitle = {Presented at the 32nd International Electric Propulsion Conference}, pages = {1 -- 7}, year = {2011}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter "RIT-22"ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter "RIT-10" ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our "InTrance" method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification.}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2017, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian D. and Lange, Caroline and Ulamec, Stephan and Ziach, Christian and Spr{\"o}witz, Tom and Ruffer, Michael and Seefeldt, Patric and Spietz, Peter and Toth, Norbert and Mimasu, Yuya and Rittweger, Andreas and Bibring, Jean-Pierre and Braukhane, Andy and Boden, Ralf Christian and Dumont, Etienne and Jahnke, Stephan Siegfried and Jetzschmann, Michael and Kr{\"u}ger, Hans and Lange, Michael and Gomez, Antonio Martelo and Massonett, Didier and Okada, Tatsuaki and Sagliano, Marco and Sasaki, Kaname and Schr{\"o}der, Silvio and Sippel, Martin and Skoczylas, Thomas and Wejmo, Elisabet}, title = {Small landers and separable sub-spacecraft for near-term solar sails}, series = {The Fourth International Symposium on Solar Sailing 2017}, booktitle = {The Fourth International Symposium on Solar Sailing 2017}, pages = {1 -- 10}, year = {2017}, abstract = {Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages.}, language = {en} } @article{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results}, series = {International Journal of Human-Computer Studies}, volume = {165}, journal = {International Journal of Human-Computer Studies}, number = {Art. No. 102854}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1071-5819}, doi = {10.1016/j.ijhcs.2022.102854}, year = {2022}, abstract = {Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence.}, language = {en} } @inproceedings{WiegnerVolkerMainzetal.2022, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and L{\"o}ken, Michael and H{\"u}ning, Felix}, title = {Wiegand-effect-powered wireless IoT sensor node}, series = {ITG-Fb. 303: Sensoren und Messsysteme}, booktitle = {ITG-Fb. 303: Sensoren und Messsysteme}, publisher = {VDE Verlag GmbH}, address = {Berlin}, isbn = {978-3-8007-5835-7}, pages = {255 -- 260}, year = {2022}, abstract = {In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.}, language = {en} } @article{KaulenSchwabedalSchneideretal.2022, author = {Kaulen, Lars and Schwabedal, Justus T. C. and Schneider, Jules and Ritter, Philipp and Bialonski, Stephan}, title = {Advanced sleep spindle identification with neural networks}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {Article number: 7686}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-11210-y}, pages = {1 -- 10}, year = {2022}, abstract = {Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model's performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance.}, language = {en} }