@inproceedings{MaurerSejdijaSander2024, author = {Maurer, Florian and Sejdija, Jonathan and Sander, Volker}, title = {Decentralized energy data storages through an Open Energy Database Server}, doi = {10.5281/zenodo.10607895}, pages = {5 Seiten}, year = {2024}, abstract = {In the research domain of energy informatics, the importance of open datais rising rapidly. This can be seen as various new public datasets are created andpublished. Unfortunately, in many cases, the data is not available under a permissivelicense corresponding to the FAIR principles, often lacking accessibility or reusability.Furthermore, the source format often differs from the desired data format or does notmeet the demands to be queried in an efficient way. To solve this on a small scale atoolbox for ETL-processes is provided to create a local energy data server with openaccess data from different valuable sources in a structured format. So while the sourcesitself do not fully comply with the FAIR principles, the provided unique toolbox allows foran efficient processing of the data as if the FAIR principles would be met. The energydata server currently includes information of power systems, weather data, networkfrequency data, European energy and gas data for demand and generation and more.However, a solution to the core problem - missing alignment to the FAIR principles - isstill needed for the National Research Data Infrastructure.}, language = {en} } @inproceedings{MaurerNitschKochemsetal.2024, author = {Maurer, Florian and Nitsch, Felix and Kochems, Johannes and Schimeczek, Christoph and Sander, Volker and Lehnhoff, Sebastian}, title = {Know your tools - a comparison of two open agent-based energy market models}, series = {2024 20th International Conference on the European Energy Market (EEM)}, booktitle = {2024 20th International Conference on the European Energy Market (EEM)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/EEM60825.2024.10609021}, pages = {8 Seiten}, year = {2024}, abstract = {Due to the transition to renewable energies, electricity markets need to be made fit for purpose. To enable the comparison of different energy market designs, modeling tools covering market actors and their heterogeneous behavior are needed. Agent-based models are ideally suited for this task. Such models can be used to simulate and analyze changes to market design or market mechanisms and their impact on market dynamics. In this paper, we conduct an evaluation and comparison of two actively developed open-source energy market simulation models. The two models, namely AMIRIS and ASSUME, are both designed to simulate future energy markets using an agent-based approach. The assessment encompasses modelling features and techniques, model performance, as well as a comparison of model results, which can serve as a blueprint for future comparative studies of simulation models. The main comparison dataset includes data of Germany in 2019 and simulates the Day-Ahead market and participating actors as individual agents. Both models are comparable close to the benchmark dataset with a MAE between 5.6 and 6.4 €/MWh while also modeling the actual dispatch realistically.}, language = {en} } @incollection{ChwallekGoezlerReichert2024, author = {Chwallek, Constanze and Goezler, Kaan and Reichert, Walter}, title = {Handling growth as a complexity driver at Faymonville}, series = {Hidden champions case compendium: Leading global markets - case studies and texts}, booktitle = {Hidden champions case compendium: Leading global markets - case studies and texts}, editor = {B{\"u}chler, Jan-Philipp and Hoon, Christina}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, isbn = {978-3-658-44300-9}, doi = {10.1007/978-3-658-44300-9_14}, pages = {209 -- 221}, year = {2024}, abstract = {The FAYMONVILLE case study describes how the family-owned company Faymonville from eastern Belgium has succeeded in becoming one of the leading manufacturers in its sector. The targeted identification of new markets, the focus on relevant customer needs, and a consistent product policy with a coordinated manufacturing concept lay the foundations for success. In this case study, students can learn about how a company can successfully resolve the fundamental contradiction between economic and customized production.}, language = {en} } @article{KohlKraemerFohryetal.2024, author = {Kohl, Philipp and Kr{\"a}mer, Yoka and Fohry, Claudia and Kraft, Bodo}, title = {Scoping review of active learning strategies and their evaluation environments for entity recognition tasks}, series = {Deep learning theory and applications}, journal = {Deep learning theory and applications}, editor = {Fred, Ana and Hadjali, Allel and Gusikhin, Oleg and Sansone, Carlo}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-66694-0 (online ISBN)}, doi = {10.1007/978-3-031-66694-0_6}, pages = {84 -- 106}, year = {2024}, abstract = {We conducted a scoping review for active learning in the domain of natural language processing (NLP), which we summarize in accordance with the PRISMA-ScR guidelines as follows: Objective: Identify active learning strategies that were proposed for entity recognition and their evaluation environments (datasets, metrics, hardware, execution time). Design: We used Scopus and ACM as our search engines. We compared the results with two literature surveys to assess the search quality. We included peer-reviewed English publications introducing or comparing active learning strategies for entity recognition. Results: We analyzed 62 relevant papers and identified 106 active learning strategies. We grouped them into three categories: exploitation-based (60x), exploration-based (14x), and hybrid strategies (32x). We found that all studies used the F1-score as an evaluation metric. Information about hardware (6x) and execution time (13x) was only occasionally included. The 62 papers used 57 different datasets to evaluate their respective strategies. Most datasets contained newspaper articles or biomedical/medical data. Our analysis revealed that 26 out of 57 datasets are publicly accessible. Conclusion: Numerous active learning strategies have been identified, along with significant open questions that still need to be addressed. Researchers and practitioners face difficulties when making data-driven decisions about which active learning strategy to adopt. Conducting comprehensive empirical comparisons using the evaluation environment proposed in this study could help establish best practices in the domain.}, language = {en} } @inproceedings{EggertSchwarz2024, author = {Eggert, Matthias and Schwarz, Jakob}, title = {What do enterprise collaboration systems afford to digital startups?}, series = {ECIS 2024 Proceedings}, booktitle = {ECIS 2024 Proceedings}, year = {2024}, abstract = {In recent years, more and more digital startups have been founded and many of them work remotely by applying enterprise collaboration systems (ECS). The study investigates the functional affordances of ECS, particularly Slack, and examines its potential as a virtual office environment for cultural development in digital startups. Through a case study and based on affordance theoretical considerations, the paper explores how ECS facilitates remote collaboration, communication, and socialization within digital startups. The findings comprise material properties of ECS (synchrony and asynchrony communication), functional affordances (virtual office and culture development affordances) as well as its realization (through communication practices, openness, and inter-company accessibility) and are conceptualized as a model for ECS affordances in digital startups.}, language = {en} } @article{AkimbekovDigelTastambeketal.2024, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Kozhahmetova, Marzhan and Sherelkhan, Dinara K. and Tauanov, Zhandos}, title = {Hydrogenotrophic methanogenesis in coal-bearing environments: Methane production, carbon sequestration, and hydrogen availability}, series = {International Journal of Hydrogen Energy}, volume = {52}, journal = {International Journal of Hydrogen Energy}, number = {Part D}, publisher = {Elsevier}, address = {New York}, issn = {1879-3487 (online)}, doi = {10.1016/j.ijhydene.2023.09.223}, pages = {1264 -- 1277}, year = {2024}, abstract = {Methane is a valuable energy source helping to mitigate the growing energy demand worldwide. However, as a potent greenhouse gas, it has also gained additional attention due to its environmental impacts. The biological production of methane is performed primarily hydrogenotrophically from H2 and CO2 by methanogenic archaea. Hydrogenotrophic methanogenesis also represents a great interest with respect to carbon re-cycling and H2 storage. The most significant carbon source, extremely rich in complex organic matter for microbial degradation and biogenic methane production, is coal. Although interest in enhanced microbial coalbed methane production is continuously increasing globally, limited knowledge exists regarding the exact origins of the coalbed methane and the associated microbial communities, including hydrogenotrophic methanogens. Here, we give an overview of hydrogenotrophic methanogens in coal beds and related environments in terms of their energy production mechanisms, unique metabolic pathways, and associated ecological functions.}, language = {en} } @article{WindmuellerSchapsZantisetal.2024, author = {Windm{\"u}ller, Anna and Schaps, Kristian and Zantis, Frederik and Domgans, Anna and Taklu, Bereket Woldegbreal and Yang, Tingting and Tsai, Chih-Long and Schierholz, Roland and Yu, Shicheng and Kungl, Hans and Tempel, Hermann and Dunin-Borkowski, Rafal E. and H{\"u}ning, Felix and Hwang, Bing Joe and Eichel, R{\"u}diger-A.}, title = {Electrochemical activation of LiGaO2: implications for ga-doped garnet solid electrolytes in li-metal batteries}, series = {ACS Applied Materials \& Interfaces}, volume = {16}, journal = {ACS Applied Materials \& Interfaces}, number = {30}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {39181-3919}, doi = {10.1021/acsami.4c03729}, pages = {14 Seiten}, year = {2024}, abstract = {Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use.}, language = {en} } @article{EichlerBalcBremenetal.2024, author = {Eichler, Fabian and Balc, Nicolae and Bremen, Sebastian and Nink, Philipp}, title = {Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples}, series = {Journal of Manufacturing and Materials Processing}, volume = {8}, journal = {Journal of Manufacturing and Materials Processing}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp8040166}, pages = {12 Seiten}, year = {2024}, abstract = {The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series.}, language = {en} } @article{ZhantlessovaSavitskayaKistaubayevaetal.2024, author = {Zhantlessova, Sirina and Savitskaya, Irina and Kistaubayeva, Aida and Ignatova, Ludmila and Talipova, Aizhan and Pogrebnjak, Alexander and Digel, Ilya}, title = {Correction: Zhantlessova et al. advanced "Green" prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy. Polymers 2022, 14, 3224}, series = {Polymers}, volume = {16}, journal = {Polymers}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym16131802}, pages = {2 Seiten}, year = {2024}, language = {en} } @article{SchopenNarayanBeckmannetal.2024, author = {Schopen, Oliver and Narayan, Sriram and Beckmann, Marvin and Najmi, Aezid-Ul-Hassan and Esch, Thomas and Shabani, Bahman}, title = {An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method}, series = {International Journal of Hydrogen Energy}, volume = {58}, journal = {International Journal of Hydrogen Energy}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0360-3199 (print)}, issn = {1879-3487 (online)}, doi = {10.1016/j.ijhydene.2024.01.218}, pages = {1302 -- 1315}, year = {2024}, abstract = {In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 \% and the cathode side charge transfer resistance decreases by 23 \% after increasing the humidity from 30 \% to 85 \%, while the results of static operation also show an increase of ∼2.2 \% in the voltage output after increasing the relative humidity from 30 \% to 85 \%. In dynamic operation, visible drying effects occur at < 50 \% relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators.}, language = {en} } @unpublished{SchmuellingGuetzlaffCzupalla2024, author = {Schm{\"u}lling, Max and G{\"u}tzlaff, Joel and Czupalla, Markus}, title = {A thermal simulation environment for moving objects on the lunar surface}, doi = {10.21203/rs.3.rs-3902363/v1}, pages = {12 Seiten}, year = {2024}, abstract = {This paper presents a thermal simulation environment for moving objects on the lunar surface. The goal of the thermal simulation environment is to enable the reliable prediction of the temperature development of a given object on the lunar surface by providing the respective heat fluxes for a mission on a given travel path. The user can import any object geometry and freely define the path that the object should travel. Using the path of the object, the relevant lunar surface geometry is imported from a digital elevation model. The relevant parts of the lunar surface are determined based on distance to the defined path. A thermal model of these surface sections is generated, consisting of a porous layer on top and a denser layer below. The object is moved across the lunar surface, and its inclination is adapted depending on the slope of the terrain below it. Finally, a transient thermal analysis of the object and its environment is performed at several positions on its path and the results are visualized. The paper introduces details on the thermal modeling of the lunar surface, as well as its verification. Furthermore, the structure of the created software is presented. The robustness of the environment is verified with the help of sensitivity studies and possible improvements are presented.}, language = {en} } @article{SchopenShahEschetal.2024, author = {Schopen, Oliver and Shah, Neel and Esch, Thomas and Shabani, Bahman}, title = {Critical quantitative evaluation of integrated health management methods for fuel cell applications}, series = {International Journal of Hydrogen Energy}, volume = {70}, journal = {International Journal of Hydrogen Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2024.05.156}, pages = {370 -- 388}, year = {2024}, abstract = {Online fault diagnostics is a crucial consideration for fuel cell systems, particularly in mobile applications, to limit downtime and degradation, and to increase lifetime. Guided by a critical literature review, in this paper an overview of Health management systems classified in a scheme is presented, introducing commonly utilised methods to diagnose FCs in various applications. In this novel scheme, various Health management system methods are summarised and structured to provide an overview of existing systems including their associated tools. These systems are classified into four categories mainly focused on model-based and non-model-based systems. The individual methods are critically discussed when used individually or combined aimed at further understanding their functionality and suitability in different applications. Additionally, a tool is introduced to evaluate methods from each category based on the scheme presented. This tool applies the technique of matrix evaluation utilising several key parameters to identify the most appropriate methods for a given application. Based on this evaluation, the most suitable methods for each specific application are combined to build an integrated Health management system.}, language = {en} } @inproceedings{KahraBreussKleefeldetal.2024, author = {Kahra, Marvin and Breuß, Michael and Kleefeld, Andreas and Welk, Martin}, title = {An Approach to Colour Morphological Supremum Formation Using the LogSumExp Approximation}, series = {Discrete Geometry and Mathematical Morphology}, booktitle = {Discrete Geometry and Mathematical Morphology}, editor = {Brunetti, Sara and Frosini, Andrea and Rinaldi, Simone}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-57793-2}, doi = {10.1007/978-3-031-57793-2_25}, pages = {325 -- 337}, year = {2024}, abstract = {Mathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations. In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric 2x2 matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach.}, language = {en} } @article{AyalaHarrisKleefeld2024, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas}, title = {Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary}, series = {Inverse Problems and Imaging}, volume = {18}, journal = {Inverse Problems and Imaging}, number = {3}, publisher = {AIMS}, address = {Springfield}, issn = {1930-8337}, doi = {10.3934/ipi.2023051}, pages = {708 -- 729}, year = {2024}, abstract = {In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method.}, language = {en} } @article{ClausnitzerKleefeld2024, author = {Clausnitzer, Julian and Kleefeld, Andreas}, title = {A spectral Galerkin exponential Euler time-stepping scheme for parabolic SPDEs on two-dimensional domains with a C² boundary}, series = {Discrete and Continuous Dynamical Systems - Series B}, volume = {29}, journal = {Discrete and Continuous Dynamical Systems - Series B}, number = {4}, publisher = {AIMS}, address = {Springfield}, issn = {1531-3492}, doi = {10.3934/dcdsb.2023148}, pages = {1624 -- 1651}, year = {2024}, abstract = {We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a C² boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach.}, language = {en} } @article{ChwallekNawrathKrastinaetal.2024, author = {Chwallek, Constanze and Nawrath, Lara and Krastina, Anzelika and Bruksle, Ieva}, title = {Supportive research on sustainable entrepreneurship and business practices}, series = {SECA Sustainable Entrepreneurship for Climate Action}, journal = {SECA Sustainable Entrepreneurship for Climate Action}, number = {3}, publisher = {Lapland University of Applied Sciences Ltd}, address = {Rovaniemi}, isbn = {978-952-316-514-4 (pdf)}, issn = {2954-1654 (on-line publication)}, pages = {67 Seiten}, year = {2024}, language = {en} } @inproceedings{BeckerBragard2024, author = {Becker, Tim and Bragard, Michael}, title = {Low-Voltage DC Training Lab for Electric Drives - Optimizing the Balancing Act Between High Student Throughput and Individual Learning Speed}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578902}, pages = {8 Seiten}, year = {2024}, abstract = {After a brief introduction of conventional laboratory structures, this work focuses on an innovative and universal approach for a setup of a training laboratory for electric machines and drive systems. The novel approach employs a central 48 V DC bus, which forms the backbone of the structure. Several sets of DC machine, asynchronous machine and synchronous machine are connected to this bus. The advantages of the novel system structure are manifold, both from a didactic and a technical point of view: Student groups can work on their own performance level in a highly parallelized and at the same time individualized way. Additional training setups (similar or different) can easily be added. Only the total power dissipation has to be provided, i.e. the DC bus balances the power flow between the student groups. Comparative results of course evaluations of several cohorts of students are shown.}, language = {en} } @inproceedings{RuettersBragardDolls2024, author = {R{\"u}tters, Ren{\´e} and Bragard, Michael and Dolls, Sarah}, title = {The Inverted Rotary Pendulum: Facilitating Practical Teaching in Advanced Control Engineering}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578937}, pages = {5 Seiten}, year = {2024}, abstract = {This paper outlines a practical approach to teach control engineering principles, with an inverted rotary pendulum, serving as an illustrative example. It shows how the pendulum is embedded in an advanced course of control engineering. This approach is incorporated into a flipped-classroom concept, as well as classical teaching concepts, offering students practical experience in control engineering. In addition, the design of the pendulum is shown, using a Raspberry Pi as the target platform for Matlab Simulink. This pendulum can be used in the classroom to evaluate the controller design mentioned above. It is analysed if the use of the pendulum generates a deeper understanding of the learning contents.}, language = {en} } @inproceedings{KramerBragardRitzetal.2024, author = {Kramer, Pia and Bragard, Michael and Ritz, Thomas and Ferfer, Ute and Schiffers, Tim}, title = {Visualizing, Enhancing and Predicting Students' Success through ECTS Monitoring}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578652}, pages = {5 Seiten}, year = {2024}, abstract = {This paper serves as an introduction to the ECTS monitoring system and its potential applications in higher education. It also emphasizes the potential for ECTS monitoring to become a proactive system, supporting students by predicting academic success and identifying groups of potential dropouts for tailored support services. The use of the nearest neighbor analysis is suggested for improving data analysis and prediction accuracy.}, language = {en} } @article{AliaziziOezsoyluBakhshiSichanietal.2024, author = {Aliazizi, Fereshteh and {\"O}zsoylu, Dua and Bakhshi Sichani, Soroush and Khorshid, Mehran and Glorieux, Christ and Robbens, Johan and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures}, series = {Micromachines}, volume = {15}, journal = {Micromachines}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi15060755}, year = {2024}, abstract = {In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.}, language = {en} }