@article{AugensteinHerbergsKuperjans2006, author = {Augenstein, Eckardt and Herbergs, S. and Kuperjans, Isabel}, title = {TOP-Energy : ein Werkzeug zur Optimierung der Geb{\"a}udeenergieversorgung}, series = {KI : K{\"a}lte, Luft, Klimatechnik}, journal = {KI : K{\"a}lte, Luft, Klimatechnik}, number = {5}, issn = {1865-5432}, pages = {198 -- 201}, year = {2006}, language = {de} } @article{CheenakulaGriebelMontagetal.2023, author = {Cheenakula, Dheeraja and Griebel, Kai and Montag, David and Gr{\"o}mping, Markus}, title = {Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, number = {11155235}, editor = {Huang, Xiaowu}, publisher = {Frontiers}, issn = {1664-302X}, doi = {10.3389/fmicb.2023.1155235}, pages = {1 -- 15}, year = {2023}, abstract = {Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80\% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.}, language = {en} } @article{DielmannBockSonnek2007, author = {Dielmann, Klaus-Peter and Bock, Alexis and Sonnek, Frederic}, title = {Stand der CO2-Allokationspl{\"a}ne in Europa und Durchsetzung der Monitoring-Richtlinien}, series = {VGB PowerTech : international journal for electricity and heat generation}, volume = {87}, journal = {VGB PowerTech : international journal for electricity and heat generation}, number = {3}, isbn = {1435-3199}, pages = {40 -- 46}, year = {2007}, language = {de} } @article{DielmannCudinaMehlkopf2003, author = {Dielmann, Klaus-Peter and Cudina, Boris and Mehlkopf, Marcus}, title = {Einfluss der Brennstoffdaten auf die CO2-Inventarisierung : Handel mit Emissionsrechten}, series = {Euroheat and power : Kraft-W{\"a}rme-Kopplung, Nah-/Fernw{\"a}rme, Contracting}, volume = {32}, journal = {Euroheat and power : Kraft-W{\"a}rme-Kopplung, Nah-/Fernw{\"a}rme, Contracting}, number = {9}, isbn = {0949-166X}, pages = {22 -- 25}, year = {2003}, language = {de} } @article{DielmannMehlkopf2005, author = {Dielmann, Klaus-Peter and Mehlkopf, Marcus}, title = {National zugeteilte Emissionen}, series = {BWK : das Energie-Fachmagazin}, volume = {57}, journal = {BWK : das Energie-Fachmagazin}, number = {5}, isbn = {0006-9612}, issn = {1618-193X}, pages = {48 -- 52}, year = {2005}, language = {de} } @article{DielmannMehlkopfCudina2004, author = {Dielmann, Klaus-Peter and Mehlkopf, Marcus and Cudina, Boris}, title = {Erfahrungen mit der Software Risa-Gen}, series = {BWK : das Energie-Fachmagazin}, volume = {56}, journal = {BWK : das Energie-Fachmagazin}, number = {3}, isbn = {0006-9612}, issn = {1618-193X}, pages = {24 -- 25}, year = {2004}, language = {de} } @article{DielmannMehlkopfCudina2005, author = {Dielmann, Klaus-Peter and Mehlkopf, Marcus and Cudina, Boris}, title = {Der Handel mit Emissionsrechten : Vorbereitung auf den europaweiten Start 2005}, series = {VGB PowerTech : international journal for electricity and heat generation}, volume = {85}, journal = {VGB PowerTech : international journal for electricity and heat generation}, number = {1/2}, isbn = {1435-3199}, pages = {66 -- 69}, year = {2005}, language = {de} } @article{DotzauerPfeifferLaueretal.2019, author = {Dotzauer, Martin and Pfeiffer, Diana and Lauer, Markus and Pohl, Marcel and Mauky, Eric and B{\"a}r, Katharina and Sonnleitner, Matthias and Z{\"o}rner, Wilfried and Hudde, Jessica and Schwarz, Bj{\"o}rn and Faßauer, Burkhardt and Dahmen, Markus and Rieke, Christian and Herbert, Johannes and Thr{\"a}n, Daniela}, title = {How to measure flexibility - Performance indicators for demand driven power generation from biogas plants}, series = {Renewable Energy}, journal = {Renewable Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0960-1481}, doi = {10.1016/j.renene.2018.10.021}, pages = {135 -- 146}, year = {2019}, language = {en} } @article{HoffstadtPohenDickeetal.2020, author = {Hoffstadt, Kevin and Pohen, Gino D. and Dicke, Max D. and Paulsen, Svea and Krafft, Simone and Zang, Joachim W. and Fonseca-Zang, Warde A. da and Leite, Athaydes and Kuperjans, Isabel}, title = {Challenges and prospects of biogas from energy cane as supplement to bioethanol production}, series = {Agronomy}, volume = {10}, journal = {Agronomy}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4395}, doi = {10.3390/agronomy10060821}, year = {2020}, abstract = {Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27\% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production.}, language = {en} } @article{JablonowskiKollmannNabeletal.2016, author = {Jablonowski, Nicolai David and Kollmann, Tobias and Nabel, Moritz and Damm, Tatjana and Klose, Holger and M{\"u}ller, Michael and Bl{\"a}sing, Marc and Seebold, S{\"o}ren and Krafft, Simone and Kuperjans, Isabel and Dahmen, Markus and Schurr, Ulrich}, title = {Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes}, series = {GCB [Global Change Biology] Bioenergy}, volume = {9}, journal = {GCB [Global Change Biology] Bioenergy}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1757-1707 (online)}, doi = {10.1111/gcbb.12346}, pages = {202 -- 214}, year = {2016}, abstract = {The performance and biomass yield of the perennial energy plant Sida hermaphrodita (hereafter referred to as Sida) as a feedstock for biogas and solid fuel was evaluated throughout one entire growing period at agricultural field conditions. A Sida plant development code was established to allow comparison of the plant growth stages and biomass composition. Four scenarios were evaluated to determine the use of Sida biomass with regard to plant development and harvest time: (i) one harvest for solid fuel only; (ii) one harvest for biogas production only; (iii) one harvest for biogas production, followed by a harvest of the regrown biomass for solid fuel; and (iv) two consecutive harvests for biogas production. To determine Sida's value as a feedstock for combustion, we assessed the caloric value, the ash quality, and melting point with regard to DIN EN ISO norms. The results showed highest total dry biomass yields of max. 25 t ha⁻¹, whereas the highest dry matter of 70\% to 80\% was obtained at the end of the growing period. Scenario (i) clearly indicated the highest energy recovery, accounting for 439 288 MJ ha⁻¹; the energy recovery of the four scenarios from highest to lowest followed this order: (i) ≫ (iii) ≫ (iv) > (ii). Analysis of the Sida ashes showed a high melting point of >1500 °C, associated with a net calorific value of 16.5-17.2 MJ kg⁻¹. All prerequisites for DIN EN ISO norms were achieved, indicating Sida's advantage as a solid energy carrier without any post-treatment after harvesting. Cell wall analysis of the stems showed a constant lignin content after sampling week 16 (July), whereas cellulose had already reached a plateau in sampling week 4 (April). The results highlight Sida as a promising woody, perennial plant, providing biomass for flexible and multipurpose energy applications.}, language = {en} } @article{Kuperjans1996, author = {Kuperjans, Isabel}, title = {Exergetische und exergo{\"o}konomische Analyse thermischer Prozesse}, series = {Arbeitsbericht / Institut f{\"u}r Wirtschaftswissenschaften, Rheinisch-Westf{\"a}lische Technische Hochschule Aachen}, journal = {Arbeitsbericht / Institut f{\"u}r Wirtschaftswissenschaften, Rheinisch-Westf{\"a}lische Technische Hochschule Aachen}, number = {06}, year = {1996}, language = {de} } @article{Kuperjans2011, author = {Kuperjans, Isabel}, title = {Gute Planung ist alles : Energieeffizienz in der Pharmaproduktion}, series = {Pharma + Food}, volume = {2011}, journal = {Pharma + Food}, number = {2}, publisher = {H{\"u}thig}, address = {Heidelberg}, issn = {1434-8942}, pages = {8 -- 10}, year = {2011}, language = {de} } @article{KuperjansEsserMeyeretal.2000, author = {Kuperjans, Isabel and Esser, J. and Meyer, J{\"o}rg and Donner, O.}, title = {Gestaltung und Bewertung von Energieanlagen unter {\"o}kologischen, wirtschaftlichen und technischen Gesichtspunkten}, series = {Umweltwirtschaftsforum : UWF}, volume = {8}, journal = {Umweltwirtschaftsforum : UWF}, number = {3}, issn = {0943-3481}, pages = {53 -- 58}, year = {2000}, language = {de} } @article{KuperjansGuerzenichRoosen2005, author = {Kuperjans, Isabel and G{\"u}rzenich, D. and Roosen, P.}, title = {Kostenfunktionen im WWW : Unterst{\"u}tzung der Auslegung energietechnischer Anlagen und deren Verschaltungen}, series = {Gasw{\"a}rme international (GWI)}, volume = {54}, journal = {Gasw{\"a}rme international (GWI)}, number = {1}, issn = {0020-9384}, pages = {19 -- 21}, year = {2005}, language = {de} } @article{KuperjansStarkeEsseretal.2000, author = {Kuperjans, Isabel and Starke, M. and Esser, J. and [u.a.],}, title = {Analyse und Konzeption von Energieanlagen unter {\"o}kologischen, wirtschaftlichen und technischen Gesichtspunkten}, series = {WLB : Umwelttechnik f{\"u}r Industrie und Kommune}, volume = {44}, journal = {WLB : Umwelttechnik f{\"u}r Industrie und Kommune}, number = {11/12}, issn = {0341-2679}, pages = {26 -- 29}, year = {2000}, language = {de} } @article{KuperjansWeitzel2015, author = {Kuperjans, Isabel and Weitzel, J.}, title = {Energiedesign 2020 : Sichere Strom- und W{\"a}rmeversorgung f{\"u}r die Industrie}, series = {TAB: das Fachmedium der TGA-Branche}, journal = {TAB: das Fachmedium der TGA-Branche}, number = {3}, publisher = {Bauverlag}, address = {G{\"u}tersloh}, issn = {0341-2032}, pages = {105 -- 107}, year = {2015}, language = {de} } @article{NobisSchmittSchemmetal.2020, author = {Nobis, Moritz and Schmitt, Carlo and Schemm, Ralf and Schnettler, Armin}, title = {Pan-European CVAR-constrained stochastic unit commitment in day-ahead and intraday electricity markets}, series = {Energies}, volume = {13}, journal = {Energies}, number = {Art. 2339}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en13092339}, pages = {1 -- 35}, year = {2020}, abstract = {The fundamental modeling of energy systems through individual unit commitment decisions is crucial for energy system planning. However, current large-scale models are not capable of including uncertainties or even risk-averse behavior arising from forecasting errors of variable renewable energies. However, risks associated with uncertain forecasting errors have become increasingly relevant within the process of decarbonization. The intraday market serves to compensate for these forecasting errors. Thus, the uncertainty of forecasting errors results in uncertain intraday prices and quantities. Therefore, this paper proposes a two-stage risk-constrained stochastic optimization approach to fundamentally model unit commitment decisions facing an uncertain intraday market. By the nesting of Lagrangian relaxation and an extended Benders decomposition, this model can be applied to large-scale, e.g., pan-European, power systems. The approach is applied to scenarios for 2023—considering a full nuclear phase-out in Germany—and 2035—considering a full coal phase-out in Germany. First, the influence of the risk factors is evaluated. Furthermore, an evaluation of the market prices shows an increase in price levels as well as an increasing day-ahead-intraday spread in 2023 and in 2035. Finally, it is shown that intraday cross-border trading has a significant influence on trading volumes and prices and ensures a more efficient allocation of resources.}, language = {en} } @article{PauksztatKuperjansMeyer2005, author = {Pauksztat, Anja and Kuperjans, Isabel and Meyer, J{\"o}rg}, title = {Formeln statt Zahlen : Referenzwerte Formeln zur energetischen Bewertung von Produktionsanlagen}, series = {BWK : das Energie-Fachmagazin}, volume = {57}, journal = {BWK : das Energie-Fachmagazin}, number = {12}, issn = {0006-9612}, pages = {52 -- 55}, year = {2005}, language = {de} } @article{PauksztatKuperjansMeyer2005, author = {Pauksztat, Anja and Kuperjans, Isabel and Meyer, J{\"o}rg}, title = {Produktbezogene Referenzwerte f{\"u}r Energieeffizienz und CO2-Emissionen}, series = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, volume = {55}, journal = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, number = {6}, issn = {0013-743X}, pages = {374 -- 376}, year = {2005}, language = {de} } @article{RiekeStollenwerkDahmenetal.2018, author = {Rieke, Christian and Stollenwerk, Dominik and Dahmen, Markus and Pieper, Martin}, title = {Modeling and optimization of a biogas plant for a demand-driven energy supply}, series = {Energy}, volume = {145}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-5442}, doi = {10.1016/j.energy.2017.12.073}, pages = {657 -- 664}, year = {2018}, abstract = {Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60\%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process. This paper provides a new model of a biogas plant, which is as accurate as the standard ADM1 model. The advantage compared to ADM1 is that it is based on only four parameters compared to 28. Applying this model, an optimization was installed, which allows a demand-driven supply by biogas plants. Finally the results are confirmed by several experiments and measurements with a real test plant.}, language = {en} }