@inproceedings{IomdinaKiselevaKotliaretal.2020, author = {Iomdina, Elena N. and Kiseleva, Anna A. and Kotliar, Konstantin and Luzhnov, Petr V.}, title = {Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing}, series = {Proceedings of the International Conference on Biomedical Innovations and Applications- BIA 2020}, booktitle = {Proceedings of the International Conference on Biomedical Innovations and Applications- BIA 2020}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-7073-2}, doi = {10.1109/BIA50171.2020.9244511}, pages = {41 -- 44}, year = {2020}, abstract = {The paper presents a method for the quantitative assessment of choroidal blood flow using an OCT-A system. The developed technique for processing of OCT-A scans is divided into two stages. At the first stage, the identification of the boundaries in the selected portion was performed. At the second stage, each pixel mark on the selected layer was represented as a volume unit, a voxel, which characterizes the region of moving blood. Three geometric shapes were considered to represent the voxel. On the example of one OCT-A scan, this work presents a quantitative assessment of the blood flow index. A possible modification of two-stage algorithm based on voxel scan processing is presented.}, language = {en} } @article{JildehKirchnerOberlaenderetal.2020, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Vahidpour, Farnoosh and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide}, series = {Sensor and Actuators A: Physical}, volume = {303}, journal = {Sensor and Actuators A: Physical}, number = {111691}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-4247}, doi = {10.1016/j.sna.2019.111691}, year = {2020}, abstract = {Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor-pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4\% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues.}, language = {en} } @article{JungStaat2020, author = {Jung, Alexander and Staat, Manfred}, title = {Erratum to "Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue" [GAMM-Mitteilungen, (2019), 42, 4, 10.1002/gamm.201900002]}, series = {GAMM-Mitteilungen}, volume = {43}, journal = {GAMM-Mitteilungen}, number = {4}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1522-2608}, doi = {10.1002/gamm.202000011}, year = {2020}, language = {en} } @inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @article{KellerRathBruckmannetal.2020, author = {Keller, Johannes and Rath, Volker and Bruckmann, Johanna and Mottaghy, Darius and Clauser, Christoph and Wolf, Andreas and Seidler, Ralf and B{\"u}cker, H. Martin and Klitzsch, Norbert}, title = {SHEMAT-Suite: An open-source code for simulating flow, heat and species transport in porous media}, series = {SoftwareX}, volume = {12}, journal = {SoftwareX}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-7110}, doi = {10.1016/j.softx.2020.100533}, pages = {9}, year = {2020}, abstract = {SHEMAT-Suite is a finite-difference open-source code for simulating coupled flow, heat and species transport in porous media. The code, written in Fortran-95, originates from geoscientific research in the fields of geothermics and hydrogeology. It comprises: (1) a versatile handling of input and output, (2) a modular framework for subsurface parameter modeling, (3) a multi-level OpenMP parallelization, (4) parameter estimation and data assimilation by stochastic approaches (Monte Carlo, Ensemble Kalman filter) and by deterministic Bayesian approaches based on automatic differentiation for calculating exact (truncation error-free) derivatives of the forward code.}, language = {en} } @article{KerresGredigkHoffmannJatheetal.2020, author = {Kerres, Karsten and Gredigk-Hoffmann, Sylvia and Jathe, R{\"u}diger and Orlik, Stefan and Sariyildiz, Mustafa and Schmidt, Torsten and Sympher, Klaus-Jochen and Uhlenbroch, Adrian}, title = {Future approaches for sewer system condition assessment}, series = {Water Practice \& Technology}, journal = {Water Practice \& Technology}, number = {15 (2)}, publisher = {IWA Publishing}, address = {London}, issn = {1751-231X}, doi = {10.2166/wpt.2020.027}, pages = {386 -- 393}, year = {2020}, abstract = {Different analytical approaches exist to describe the structural substance or wear reserve of sewer systems. The aim is to convert engineering assessments of often complex defect patterns into computational algorithms and determine a substance class for a sewer section or manhole. This analytically determined information is essential for strategic rehabilitation planning processes up to network level, as it corresponds to the most appropriate rehabilitation type and can thus provide decision-making support. Current calculation methods differ clearly from each other in parts, so that substance classes determined by the different approaches are only partially comparable with each other. The objective of the German R\&D cooperation project 'SubKanS' is to develop a methodology for classifying the specific defect patterns resulting from the interaction of all the individual defects, and their severities and locations. The methodology takes into account the structural substance of sewer sections and manholes, based on real data and theoretical considerations analogous to the condition classification of individual defects. The result is a catalogue of defect patterns and characteristics, as well as associated structural substance classifications of sewer systems (substance classes). The methodology for sewer system substance classification is developed so that the classification of individual defects can be transferred into a substance class of the sewer section or manhole, eventually taking into account further information (e.g. pipe material, nominal diameter, etc.). The result is a validated methodology for automated sewer system substance classification.}, language = {en} } @article{KetelhutBrueggeGoelletal.2020, author = {Ketelhut, Maike and Br{\"u}gge, G. M. and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Adaptive iterative learning control of an industrial robot during neuromuscular training}, series = {IFAC PapersOnLine}, volume = {53}, journal = {IFAC PapersOnLine}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2020.12.741}, pages = {16468 -- 16475}, year = {2020}, abstract = {To prevent the reduction of muscle mass and loss of strength coming along with the human aging process, regular training with e.g. a leg press is suitable. However, the risk of training-induced injuries requires the continuous monitoring and controlling of the forces applied to the musculoskeletal system as well as the velocity along the motion trajectory and the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm to minimize the knee joint loadings during the leg extension training with an industrial robot is proposed. The response of the algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee and compared to the results of a higher-order iterative learning control algorithm, a robust iterative learning control and a recently proposed conventional norm-optimal iterative learning control algorithm. Although significant improvements in performance are made compared to the conventional norm-optimal iterative learning control algorithm with a small learning factor, for the developed approach as well as the robust iterative learning control algorithm small steady state errors occur.}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalil, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0}, series = {IEEE Access}, journal = {IEEE Access}, publisher = {IEEE}, address = {New York, NY}, isbn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {1 -- 12}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalili, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling with Application in Industry 4.0}, series = {IEEE Access}, volume = {8}, journal = {IEEE Access}, number = {Art. 9108222}, publisher = {IEEE}, address = {New York, NY}, issn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {111381 -- 111393}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @inproceedings{KirschMatareFerreinetal.2020, author = {Kirsch, Maximilian and Matar{\´e}, Victor and Ferrein, Alexander and Schiffer, Stefan}, title = {Integrating golog++ and ROS for Practical and Portable High-level Control}, series = {Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2}, booktitle = {Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2}, publisher = {SciTePress}, address = {Set{\´u}bal, Portugal}, doi = {10.5220/0008984406920699}, pages = {692 -- 699}, year = {2020}, abstract = {The field of Cognitive Robotics aims at intelligent decision making of autonomous robots. It has matured over the last 25 or so years quite a bit. That is, a number of high-level control languages and architectures have emerged from the field. One concern in this regard is the action language GOLOG. GOLOG has been used in a rather large number of applications as a high-level control language ranging from intelligent service robots to soccer robots. For the lower level robot software, the Robot Operating System (ROS) has been around for more than a decade now and it has developed into the standard middleware for robot applications. ROS provides a large number of packages for standard tasks in robotics like localisation, navigation, and object recognition. Interestingly enough, only little work within ROS has gone into the high-level control of robots. In this paper, we describe our approach to marry the GOLOG action language with ROS. In particular, we present our architecture on inte grating golog++, which is based on the GOLOG dialect Readylog, with the Robot Operating System. With an example application on the Pepper service robot, we show how primitive actions can be easily mapped to the ROS ActionLib framework and present our control architecture in detail.}, language = {en} } @incollection{Kleefeld2020, author = {Kleefeld, Andreas}, title = {Numerical calculation of interior transmission eigenvalues with mixed boundary conditions}, series = {Computational and Analytic Methods in Science and Engineering}, booktitle = {Computational and Analytic Methods in Science and Engineering}, editor = {Constanda, Christian}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-030-48185-8 (Hardcover)}, doi = {10.1007/978-3-030-48186-5_9}, pages = {173 -- 195}, year = {2020}, abstract = {Interior transmission eigenvalue problems for the Helmholtz equation play an important role in inverse wave scattering. Some distribution properties of those eigenvalues in the complex plane are reviewed. Further, a new scattering model for the interior transmission eigenvalue problem with mixed boundary conditions is described and an efficient algorithm for computing the interior transmission eigenvalues is proposed. Finally, extensive numerical results for a variety of two-dimensional scatterers are presented to show the validity of the proposed scheme.}, language = {en} } @article{KleefeldPieronek2020, author = {Kleefeld, Andreas and Pieronek, J.}, title = {Elastic transmission eigenvalues and their computation via the method of fundamental solutions}, series = {Applicable Analysis}, volume = {100}, journal = {Applicable Analysis}, number = {16}, publisher = {Taylore \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2020.1721473}, pages = {3445 -- 3462}, year = {2020}, abstract = {A stabilized version of the fundamental solution method to catch ill-conditioning effects is investigated with focus on the computation of complex-valued elastic interior transmission eigenvalues in two dimensions for homogeneous and isotropic media. Its algorithm can be implemented very shortly and adopts to many similar partial differential equation-based eigenproblems as long as the underlying fundamental solution function can be easily generated. We develop a corroborative approximation analysis which also implicates new basic results for transmission eigenfunctions and present some numerical examples which together prove successful feasibility of our eigenvalue recovery approach.}, language = {en} } @article{KnoxBruggemannGossmannetal.2020, author = {Knox, Ronald and Bruggemann, Andrea and Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Fertig, Niels and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {Combining physiological relevance and throughput for in vitro cardiac contractility measurement}, series = {Biophysical Journal}, volume = {118}, journal = {Biophysical Journal}, number = {Issue 3, Supplement 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.3104}, pages = {570a}, year = {2020}, abstract = {Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these.}, language = {en} } @article{KoppSchunckGosauetal.2020, author = {Kopp, Alexander and Schunck, Laura and Gosau, Martin and Smeets, Ralf and Burg, Simon and Fuest, Sandra and Kr{\"o}ger, Nadja and Zinser, Max and Krohn, Sebastian and Behbahani, Mehdi and K{\"o}pf, Marius and Lauts, Lisa and Rutkowski, Rico}, title = {Influence of the casting concentration on the mechanical and optical properties of Fa/CaCl2-derived silk fibroin membranes}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18 art. no. 6704}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21186704}, year = {2020}, abstract = {In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live-dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes.}, language = {en} } @article{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Calculation Methodology for Predicting Exhaust Mass Flows and Exhaust Temperature Profiles for Heavy-Duty Vehicles}, series = {SAE International Journal of Commercial Vehicles}, volume = {13}, journal = {SAE International Journal of Commercial Vehicles}, number = {2}, publisher = {SAE International}, address = {Warrendale, Pa.}, issn = {1946-3928}, doi = {10.4271/02-13-02-0009}, pages = {129 -- 143}, year = {2020}, abstract = {The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition. In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile. In addition to the use of road gradient profile data, an evaluation of the continuously recorded distance signal, which represents the distance between the test vehicle and the road user ahead, is included in the prediction model. Using a Fourier analysis, the trajectory of the vehicle speed is determined for a defined prediction horizon. To verify the method, a holistic simulation model consisting of several hierarchically structured submodels has been developed. A map-based submodel of a combustion engine is used to determine the EGR and EAT exhaust gas mass flows and exhaust gas temperature profiles. All simulation results are validated on the basis of the recorded vehicle and environmental data. Deviations from the predicted values are analyzed and discussed.}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, abstract = {In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented.}, language = {en} } @article{KuhnhenneRegerPyschnyetal.2020, author = {Kuhnhenne, Markus and Reger, Vitali and Pyschny, Dominik and D{\"o}ring, Bernd}, title = {Influence of airtightness of steel sandwich panel joints on heat losses}, series = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, volume = {172}, journal = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, number = {Art. 05008}, publisher = {EDP Sciences}, address = {Les Ulis}, doi = {10.1051/e3sconf/202017205008}, pages = {6}, year = {2020}, abstract = {Energy saving ordinances requires that buildings must be designed in such a way that the heat transfer surface including the joints is permanently air impermeable. The prefabricated roof and wall panels in lightweight steel constructions are airtight in the area of the steel covering layers. The sealing of the panel joints contributes to fulfil the comprehensive requirements for an airtight building envelope. To improve the airtightness of steel sandwich panels, additional sealing tapes can be installed in the panel joint. The influence of these sealing tapes was evaluated by measurements carried out by the RWTH Aachen University - Sustainable Metal Building Envelopes. Different installation situations were evaluated by carrying out airtightness tests for different joint distances. In addition, the influence on the heat transfer coefficient was also evaluated using the Finite Element Method (FEM). The combination of obtained air volume flow and transmission losses enables to create an "effective heat transfer coefficient" due to transmission and infiltration. This summarizes both effects in one value and is particularly helpful for approximate calculations on energy efficiency.}, language = {en} } @article{Koehler2020, author = {K{\"o}hler, Klemens}, title = {A conflict theory perspective of IT attacks - consequences for IT security education}, number = {Preprint}, year = {2020}, abstract = {Cyberspace is "the environment formed by physical and non-physical components to store, modify, and exchange data using computer networks" (NATO CCDCOE). Beyond that, it is an environment where people interact. IT attacks are hostile, non-cooperative interactions that can be described with conflict theory. Applying conflict theory to IT security leads to different objectives for end-user education, requiring different formats like agency-based competence developing games.}, language = {en} } @incollection{LeichtScholtenSteuerDankert2020, author = {Leicht-Scholten, Carmen and Steuer-Dankert, Linda}, title = {Educating engineers for socially responsible solutions through design thinking}, series = {Design thinking in higher education: interdisciplinary encounters}, booktitle = {Design thinking in higher education: interdisciplinary encounters}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-15-5780-4}, doi = {10.1007/978-981-15-5780-4}, pages = {229 -- 246}, year = {2020}, abstract = {There is a broad international discussion about rethinking engineering education in order to educate engineers to cope with future challenges, and particularly the sustainable development goals. In this context, there is a consensus about the need to shift from a mostly technical paradigm to a more holistic problem-based approach, which can address the social embeddedness of technology in society. Among the strategies suggested to address this social embeddedness, design thinking has been proposed as an essential complement to engineering precisely for this purpose. This chapter describes the requirements for integrating the design thinking approach in engineering education. We exemplify the requirements and challenges by presenting our approach based on our course experiences at RWTH Aachen University. The chapter first describes the development of our approach of integrating design thinking in engineering curricula, how we combine it with the Sustainable Development Goals (SDG) as well as the role of sustainability and social responsibility in engineering. Secondly, we present the course "Expanding Engineering Limits: Culture, Diversity, and Gender" at RWTH Aachen University. We describe the necessity to theoretically embed the method in social and cultural context, giving students the opportunity to reflect on cultural, national, or individual "engineering limits," and to be able to overcome them using design thinking as a next step for collaborative project work. The paper will suggest that the successful implementation of design thinking as a method in engineering education needs to be framed and contextualized within Science and Technology Studies (STS).}, language = {en} } @inproceedings{LeiseBreuerAltherretal.2020, author = {Leise, Philipp and Breuer, Tim and Altherr, Lena and Pelz, Peter F.}, title = {Development, validation and assessment of a resilient pumping system}, series = {Proceedings of the Joint International Resilience Conference, JIRC2020}, booktitle = {Proceedings of the Joint International Resilience Conference, JIRC2020}, isbn = {978-90-365-5095-6}, pages = {97 -- 100}, year = {2020}, abstract = {The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour.}, language = {en} }