@inproceedings{EvansBraunUlmeretal.2022, author = {Evans, Benjamin and Braun, Sebastian and Ulmer, Jessica and Wollert, J{\"o}rg}, title = {AAS implementations - current problems and solutions}, series = {20th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {20th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, isbn = {978-1-6654-1040-3}, doi = {10.1109/ME54704.2022.9982933}, pages = {6 Seiten}, year = {2022}, abstract = {The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field.}, language = {en} } @article{EngelmannPourshahidiShalabyetal.2022, author = {Engelmann, Ulrich M. and Pourshahidi, Mohammad Ali and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169965}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169965}, year = {2022}, abstract = {Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles' magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing.}, language = {en} } @article{EmhardtJarodzkaBrandGruweletal.2022, author = {Emhardt, Selina N. and Jarodzka, Halszka and Brand-Gruwel, Saskia and Drumm, Christian and Niehorster, Diederick C. and van Gog, Tamara}, title = {What is my teacher talking about? Effects of displaying the teacher's gaze and mouse cursor cues in video lectures on students' learning}, series = {Journal of Cognitive Psychology}, journal = {Journal of Cognitive Psychology}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-5911}, doi = {10.1080/20445911.2022.2080831}, pages = {1 -- 19}, year = {2022}, abstract = {Eye movement modelling examples (EMME) are instructional videos that display a teacher's eye movements as "gaze cursor" (e.g. a moving dot) superimposed on the learning task. This study investigated if previous findings on the beneficial effects of EMME would extend to online lecture videos and compared the effects of displaying the teacher's gaze cursor with displaying the more traditional mouse cursor as a tool to guide learners' attention. Novices (N = 124) studied a pre-recorded video lecture on how to model business processes in a 2 (mouse cursor absent/present) × 2 (gaze cursor absent/present) between-subjects design. Unexpectedly, we did not find significant effects of the presence of gaze or mouse cursors on mental effort and learning. However, participants who watched videos with the gaze cursor found it easier to follow the teacher. Overall, participants responded positively to the gaze cursor, especially when the mouse cursor was not displayed in the video.}, language = {en} } @inproceedings{EggertKriska2022, author = {Eggert, Mathias and Kriska, Melina}, title = {Gamification for software development processes - relevant affordances and design principles}, series = {Proceedings of the 55th Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 55th Hawaii International Conference on System Sciences}, publisher = {HICSS Publishing}, address = {Honolulu}, isbn = {978-0-9981331-5-7}, doi = {10.24251/HICSS.2022.200}, pages = {1614 -- 1623}, year = {2022}, abstract = {A Gamified Information System (GIS) implements game concepts and elements, such as affordances and game design principles to motivate people. Based on the idea to develop a GIS to increase the motivation of software developers to perform software quality tasks, the research work at hand aims at investigating relevant requirements from that target group. Therefore, 14 interviews with software development experts are conducted and analyzed. According to the results, software developers prefer the affordances points, narrative storytelling in a multiplayer and a round-based setting. Furthermore, six design principles for the development of a GIS are derived.}, language = {en} } @inproceedings{EggertDyong2022, author = {Eggert, Mathias and Dyong, Julian}, title = {Applying process mining in small and medium sized IT enterprises - challenges and guidelines}, series = {International Conference on Business Process Management (BPM 2022)}, booktitle = {International Conference on Business Process Management (BPM 2022)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-16103-2}, doi = {10.1007/978-3-031-16103-2_11}, pages = {125 -- 142}, year = {2022}, abstract = {Process mining gets more and more attention even outside large enterprises and can be a major benefit for small and medium sized enterprises (SMEs) to gain competitive advantages. Applying process mining is challenging, particularly for SMEs because they have less resources and process maturity. So far, IS researchers analyzed process mining challenges with a focus on larger companies. This paper investigates the application of process mining by means of a case study and sheds light into the particular challenges of an IT SME. The results reveal 13 SME process mining challenges and seven guidelines to address them. In this way, the paper contributes to the understanding of process mining application in SME and shows similarities and differences to larger companies.}, language = {en} } @article{DitzhausGaigall2022, author = {Ditzhaus, Marc and Gaigall, Daniel}, title = {Testing marginal homogeneity in Hilbert spaces with applications to stock market returns}, series = {Test}, volume = {2022}, journal = {Test}, number = {31}, publisher = {Springer}, issn = {1863-8260}, doi = {10.1007/s11749-022-00802-5}, pages = {749 -- 770}, year = {2022}, abstract = {This paper considers a paired data framework and discusses the question of marginal homogeneity of bivariate high-dimensional or functional data. The related testing problem can be endowed into a more general setting for paired random variables taking values in a general Hilbert space. To address this problem, a Cram{\´e}r-von-Mises type test statistic is applied and a bootstrap procedure is suggested to obtain critical values and finally a consistent test. The desired properties of a bootstrap test can be derived that are asymptotic exactness under the null hypothesis and consistency under alternatives. Simulations show the quality of the test in the finite sample case. A possible application is the comparison of two possibly dependent stock market returns based on functional data. The approach is demonstrated based on historical data for different stock market indices.}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @inproceedings{DannenSchindelePruemmeretal.2022, author = {Dannen, Tammo and Schindele, Benedikt and Pr{\"u}mmer, Marcel and Arntz, Kristian and Bergs, Thomas}, title = {Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking}, series = {Procedia CIRP}, volume = {107}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.05.188}, pages = {1539 -- 1544}, year = {2022}, abstract = {Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model's initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality.}, language = {en} } @article{ColomboDriraFrotscheretal.2022, author = {Colombo, Daniele and Drira, Slah and Frotscher, Ralf and Staat, Manfred}, title = {An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis}, series = {International Journal for Numerical Methods in Engineering}, volume = {124}, journal = {International Journal for Numerical Methods in Engineering}, number = {2}, publisher = {Wiley}, address = {Chichester}, issn = {1097-0207}, doi = {10.1002/nme.7126}, pages = {402 -- 433}, year = {2022}, abstract = {Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element.}, language = {en} } @article{CollPeralesSchulteTiggesRondinoneetal.2022, author = {Coll-Perales, Baldomero and Schulte-Tigges, Joschua and Rondinone, Michele and Gozalvez, Javier and Reke, Michael and Matheis, Dominik and Walter, Thomas}, title = {Prototyping and evaluation of infrastructure-assisted transition of control for cooperative automated vehicles}, series = {IEEE Transactions on Intelligent Transportation Systems}, volume = {23}, journal = {IEEE Transactions on Intelligent Transportation Systems}, number = {7}, publisher = {IEEE}, issn = {1524-9050 (Print)}, doi = {10.1109/TITS.2021.3061085}, pages = {6720 -- 6736}, year = {2022}, abstract = {Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of the driving environment. If the driver fails to get back the control in a limited time, a Minimum Risk Maneuver (MRM) is executed to bring the vehicle into a safe state (e.g., decelerating to full stop). The execution of ToCs requires some time and can cause traffic disruption and safety risks that increase if several vehicles execute ToCs/MRMs at similar times and in the same area. This study proposes to use novel C-ITS traffic management measures where the infrastructure exploits V2X communications to assist Connected and Automated Vehicles (CAVs) in the execution of ToCs. The infrastructure can suggest a spatial distribution of ToCs, and inform vehicles of the locations where they could execute a safe stop in case of MRM. This paper reports the first field operational tests that validate the feasibility and quantify the benefits of the proposed infrastructure-assisted ToC and MRM management. The paper also presents the CAV and roadside infrastructure prototypes implemented and used in the trials. The conducted field trials demonstrate that infrastructure-assisted traffic management solutions can reduce safety risks and traffic disruptions.}, language = {en} } @article{ChloeMalyaranCraveiroetal.2022, author = {Chlo{\´e}, Radermacher and Malyaran, Hanna and Craveiro, Rogerio Bastos and Peglow, Sarah and Behbahani, Mehdi and Pufe, Thomas and Wolf, Michael and Neuss, Sabine}, title = {Mechanical loading on cementoblasts: a mini review}, series = {Osteologie}, volume = {31}, journal = {Osteologie}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {1019-1291}, doi = {10.1055/a-1826-0777}, pages = {111 -- 118}, year = {2022}, abstract = {Orthodontic treatments are concomitant with mechanical forces and thereby cause teeth movements. The applied forces are transmitted to the tooth root and the periodontal ligaments which is compressed on one side and tensed up on the other side. Indeed, strong forces can lead to tooth root resorption and the crown-to-tooth ratio is reduced with the potential for significant clinical impact. The cementum, which covers the tooth root, is a thin mineralized tissue of the periodontium that connects the periodontal ligament with the tooth and is build up by cementoblasts. The impact of tension and compression on these cells is investigated in several in vivo and in vitro studies demonstrating differences in protein expression and signaling pathways. In summary, osteogenic marker changes indicate that cyclic tensile forces support whereas static tension inhibits cementogenesis. Furthermore, cementogenesis experiences the same protein expression changes in static conditions as static tension, but cyclic compression leads to the exact opposite of cyclic tension. Consistent with marker expression changes, the singaling pathways of Wnt/ß-catenin and RANKL/OPG show that tissue compression leads to cementum degradation and tension forces to cementogenesis. However, the cementum, and in particular its cementoblasts, remain a research area which should be explored in more detail to understand the underlying mechanism of bone resorption and remodeling after orthodontic treatments.}, language = {en} } @article{CheenakulaHoffstadtKrafftetal.2022, author = {Cheenakula, Dheeraja and Hoffstadt, Kevin and Krafft, Simone and Reinecke, Diana and Klose, Holger and Kuperjans, Isabel and Gr{\"o}mping, Markus}, title = {Anaerobic digestion of algal-bacterial biomass of an Algal Turf Scrubber system}, series = {Biomass Conversion and Biorefinery}, volume = {13}, journal = {Biomass Conversion and Biorefinery}, publisher = {Springer}, address = {Berlin}, issn = {2190-6823}, doi = {10.1007/s13399-022-03236-z}, pages = {15 Seiten}, year = {2022}, abstract = {This study investigated the anaerobic digestion of an algal-bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal-bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4\%) and a mixture of manure and maize silage (107.4\%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6\%) and percolated green waste (43.5\%) inocula. To further evaluate the potential of algal-bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7-12.5 MWh a-1) can be gained through the addition of algal-bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies.}, language = {en} } @inproceedings{ChavezBermudezWollert2022, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link}, series = {2022 IEEE 18th International Conference on Factory Communication Systems (WFCS)}, booktitle = {2022 IEEE 18th International Conference on Factory Communication Systems (WFCS)}, publisher = {IEEE}, isbn = {978-1-6654-1086-1}, doi = {10.1109/WFCS53837.2022.9779176}, pages = {4 Seiten}, year = {2022}, abstract = {The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies.}, language = {en} } @inproceedings{ChavezBermudezCruzCastanonRuchayetal.2022, author = {Chavez Bermudez, Victor Francisco and Cruz Castanon, Victor Fernando and Ruchay, Marco and Wollert, J{\"o}rg}, title = {Rapid prototyping framework for automation applications based on IO-Link}, series = {Tagungsband AALE 2022}, booktitle = {Tagungsband AALE 2022}, editor = {Leipzig, Hochschule f{\"u}r Technik, Wirtschaft und Kultur}, address = {Leipzig}, isbn = {978-3-910103-00-9}, doi = {10.33968/2022.28}, pages = {8 Seiten}, year = {2022}, abstract = {The development of protype applications with sensors and actuators in the automation industry requires tools that are independent of manufacturer, and are flexible enough to be modified or extended for any specific requirements. Currently, developing prototypes with industrial sensors and actuators is not straightforward. First of all, the exchange of information depends on the industrial protocol that these devices have. Second, a specific configuration and installation is done based on the hardware that is used, such as automation controllers or industrial gateways. This means that the development for a specific industrial protocol, highly depends on the hardware and the software that vendors provide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem. For this project we have focused to work with the IO-Link protocol. The framework consists of an Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master protocol. The main advantage of such framework is that an application with industrial devices can be rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not easy to port to another system and is closed-source.}, language = {en} } @inproceedings{CaminosSchmitzAttietal.2022, author = {Caminos, Ricardo Alexander Chico and Schmitz, Pascal and Atti, Vikrama and Mahdi, Zahra and Teixeira Boura, Cristiano Jos{\´e} and Sattler, Johannes Christoph and Herrmann, Ulf and Hilger, Patrick and Dieckmann, Simon}, title = {Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086262}, pages = {8 Seiten}, year = {2022}, abstract = {The Solar-Institut J{\"u}lich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed.}, language = {en} } @inproceedings{BuesgenKloeserKohletal.2022, author = {B{\"u}sgen, Andr{\´e} and Kl{\"o}ser, Lars and Kohl, Philipp and Schmidts, Oliver and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Exploratory analysis of chat-based black market profiles with natural language processing}, series = {Proceedings of the 11th International Conference on Data Science, Technology and Applications}, booktitle = {Proceedings of the 11th International Conference on Data Science, Technology and Applications}, isbn = {978-989-758-583-8}, issn = {2184-285X}, doi = {10.5220/0011271400003269}, pages = {83 -- 94}, year = {2022}, abstract = {Messenger apps like WhatsApp or Telegram are an integral part of daily communication. Besides the various positive effects, those services extend the operating range of criminals. Open trading groups with many thousand participants emerged on Telegram. Law enforcement agencies monitor suspicious users in such chat rooms. This research shows that text analysis, based on natural language processing, facilitates this through a meaningful domain overview and detailed investigations. We crawled a corpus from such self-proclaimed black markets and annotated five attribute types products, money, payment methods, user names, and locations. Based on each message a user sends, we extract and group these attributes to build profiles. Then, we build features to cluster the profiles. Pretrained word vectors yield better unsupervised clustering results than current state-of-the-art transformer models. The result is a semantically meaningful high-level overview of the user landscape of black market chatrooms. Additionally, the extracted structured information serves as a foundation for further data exploration, for example, the most active users or preferred payment methods.}, language = {en} } @inproceedings{Butenweg2022, author = {Butenweg, Christoph}, title = {Seismic design and evaluation of industrial facilities}, series = {Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology - Bucharest, 2022}, booktitle = {Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology - Bucharest, 2022}, editor = {Vacareanu, Radu and Ionescu, Constantin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-15103-3}, issn = {2524-342X}, doi = {10.1007/978-3-031-15104-0}, pages = {449 -- 464}, year = {2022}, abstract = {Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage.}, language = {en} } @article{BurgerLindnerRumpfetal.2022, author = {Burger, Ren{\´e} and Lindner, Simon and Rumpf, Jessica and Do, Xuan Tung and Diehl, Bernd W.K. and Rehahn, Matthias and Monakhova, Yulia and Schulze, Margit}, title = {Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {212}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 114649}, publisher = {Elsevier}, address = {New York, NY}, isbn = {0731-7085}, doi = {10.1016/j.jpba.2022.114649}, year = {2022}, abstract = {Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin's molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6\% and 12.9\% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin's molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems.}, language = {en} } @incollection{BraunerVervierBrillowskietal.2022, author = {Brauner, Philipp and Vervier, Luisa and Brillowski, Florian and Dammers, Hannah and Steuer-Dankert, Linda and Schneider, Sebastian and Baier, Ralph and Ziefle, Martina and Gries, Thomas and Leicht-Scholten, Carmen and Mertens, Alexander and Nagel, Saskia K.}, title = {Organization Routines in Next Generation Manufacturing}, series = {Forecasting Next Generation Manufacturing}, booktitle = {Forecasting Next Generation Manufacturing}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07734-0}, doi = {10.1007/978-3-031-07734-0_5}, pages = {75 -- 94}, year = {2022}, abstract = {Next Generation Manufacturing promises significant improvements in performance, productivity, and value creation. In addition to the desired and projected improvements regarding the planning, production, and usage cycles of products, this digital transformation will have a huge impact on work, workers, and workplace design. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these changes, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the organization dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we highlight seven areas in which the digital transformation of production will change how we work, how we organize the work within a company, how we evaluate these changes, and how employment and labor rights will be affected across company boundaries. The experts are unsure whether the use of collaborative robots in factories will replace traditional robots by 2030. They believe that the use of hybrid intelligence will supplement human decision-making processes in production environments. Furthermore, they predict that artificial intelligence will lead to changes in management processes, leadership, and the elimination of hierarchies. However, to ensure that social and normative aspects are incorporated into the AI algorithms, restricting measurement of individual performance will be necessary. Additionally, AI-based decision support can significantly contribute toward new, socially accepted modes of leadership. Finally, the experts believe that there will be a reduction in the workforce by the year 2030.}, language = {en} } @inproceedings{BlankeSchmidtGoettscheetal.2022, author = {Blanke, Tobias and Schmidt, Katharina S. and G{\"o}ttsche, Joachim and D{\"o}ring, Bernd and Frisch, J{\´e}r{\^o}me and van Treeck, Christoph}, title = {Time series aggregation for energy system design: review and extension of modelling seasonal storages}, series = {Energy Informatics}, volume = {5}, booktitle = {Energy Informatics}, number = {1, Article number: 17}, editor = {Weidlich, Anke and Neumann, Dirk and Gust, Gunther and Staudt, Philipp and Sch{\"a}fer, Mirko}, publisher = {Springer Nature}, issn = {2520-8942}, doi = {10.1186/s42162-022-00208-5}, pages = {1 -- 14}, year = {2022}, abstract = {Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, "Time series aggregation for energy system design: Modeling seasonal storage", has developed a seasonal storage model to address this issue. Simultaneously, the paper "Optimal design of multi-energy systems with seasonal storage" has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results.}, language = {en} }