@article{VergePoettgenAltherretal.2016, author = {Verg{\´e}, Angela and P{\"o}ttgen, Philipp and Altherr, Lena and Ederer, Thorsten and Pelz, Peter F.}, title = {Lebensdauer als Optimierungsziel: Algorithmische Struktursynthese am Beispiel eines hydrostatischen Getriebes}, series = {O+P - {\"O}lhydraulik und Pneumatik}, volume = {60}, journal = {O+P - {\"O}lhydraulik und Pneumatik}, number = {1-2}, editor = {Greuloch, Ivo and Weber, Manfred and Meier, Miles}, publisher = {Vereinigte Fachverl.}, address = {Mainz}, issn = {1614-9602}, pages = {114 -- 121}, year = {2016}, abstract = {Verf{\"u}gbarkeit und Nachhaltigkeit sind wichtige Anforderungen bei der Planung langlebiger technischer Systeme. Meist werden bei Lebensdaueroptimierungen lediglich einzelne Komponenten vordefinierter Systeme untersucht. Ob eine optimale Lebensdauer eine g{\"a}nzlich andere Systemvariante bedingt, wird nur selten hinterfragt. Technical Operations Research (TOR) erlaubt es, aus Obermengen technischer Systeme automatisiert die lebensdaueroptimale Systemstruktur auszuw{\"a}hlen. Der Artikel zeigt dies am Beispiel eines hydrostatischen Getriebes.}, language = {de} } @inproceedings{TischbeinKeanVertgewalletal.2023, author = {Tischbein, Franziska and Kean, Kilian and Vertgewall, Chris Martin and Ulbig, Andreas and Altherr, Lena}, title = {Determination of the topology of low-voltage distribution grids using cluster methods}, series = {27th International Conference on Electricity Distribution (CIRED 2023)}, booktitle = {27th International Conference on Electricity Distribution (CIRED 2023)}, publisher = {IEEE}, isbn = {978-1-83953-855-1}, doi = {10.1049/icp.2023.0478}, pages = {1 -- 5}, year = {2023}, abstract = {Due to the decarbonization of the energy sector, the electric distribution grids are undergoing a major transformation, which is expected to increase the load on the operating resources due to new electrical loads and distributed energy resources. Therefore, grid operators need to gradually move to active grid management in order to ensure safe and reliable grid operation. However, this requires knowledge of key grid variables, such as node voltages, which is why the mass integration of measurement technology (smart meters) is necessary. Another problem is the fact that a large part of the topology of the distribution grids is not sufficiently digitized and models are partly faulty, which means that active grid operation management today has to be carried out largely blindly. It is therefore part of current research to develop methods for determining unknown grid topologies based on measurement data. In this paper, different clustering algorithms are presented and their performance of topology detection of low voltage grids is compared. Furthermore, the influence of measurement uncertainties is investigated in the form of a sensitivity analysis.}, language = {en} } @article{SunAltherrPeietal.2018, author = {Sun, Hui and Altherr, Lena and Pei, Ji and Pelz, Peter F. and Yuan, Shouqi}, title = {Optimal booster station design and operation under uncertain load}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.102}, pages = {102 -- 115}, year = {2018}, abstract = {Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system's resilience can be engineered}, language = {en} } @incollection{StengerAltherrMuelleretal.2018, author = {Stenger, David and Altherr, Lena and M{\"u}ller, Tankred and Pelz, Peter F.}, title = {Product family design optimization using model-based engineering techniques}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_66}, pages = {495 -- 502}, year = {2018}, abstract = {Highly competitive markets paired with tremendous production volumes demand particularly cost efficient products. The usage of common parts and modules across product families can potentially reduce production costs. Yet, increasing commonality typically results in overdesign of individual products. Multi domain virtual prototyping enables designers to evaluate costs and technical feasibility of different single product designs at reasonable computational effort in early design phases. However, savings by platform commonality are hard to quantify and require detailed knowledge of e.g. the production process and the supply chain. Therefore, we present and evaluate a multi-objective metamodel-based optimization algorithm which enables designers to explore the trade-off between high commonality and cost optimal design of single products.}, language = {en} } @incollection{StengerAltherrAbel2019, author = {Stenger, David and Altherr, Lena and Abel, Dirk}, title = {Machine learning and metaheuristics for black-box optimization of product families: a case-study investigating solution quality vs. computational overhead}, series = {Operations Research Proceedings 2018}, booktitle = {Operations Research Proceedings 2018}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-18499-5 (Print)}, doi = {10.1007/978-3-030-18500-8_47}, pages = {379 -- 385}, year = {2019}, abstract = {In product development, numerous design decisions have to be made. Multi-domain virtual prototyping provides a variety of tools to assess technical feasibility of design options, however often requires substantial computational effort for just a single evaluation. A special challenge is therefore the optimal design of product families, which consist of a group of products derived from a common platform. Finding an optimal platform configuration (stating what is shared and what is individually designed for each product) and an optimal design of all products simultaneously leads to a mixed-integer nonlinear black-box optimization model. We present an optimization approach based on metamodels and a metaheuristic. To increase computational efficiency and solution quality, we compare different types of Gaussian process regression metamodels adapted from the domain of machine learning, and combine them with a genetic algorithm. We illustrate our approach on the example of a product family of electrical drives, and investigate the trade-off between solution quality and computational overhead.}, language = {en} } @inproceedings{SchaenzleAltherrEdereretal.2015, author = {Sch{\"a}nzle, Christian and Altherr, Lena and Ederer, Thorsten and Pelz, Peter}, title = {TOR - Towards the energetically optimal ventilation system}, pages = {1 Seite}, year = {2015}, language = {en} } @inproceedings{SchaenzleAltherrEdereretal.2015, author = {Sch{\"a}nzle, Christian and Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F.}, title = {As good as it can be: Ventilation system design by a combined scaling and discrete optimization method}, series = {Proceedings of FAN 2015}, booktitle = {Proceedings of FAN 2015}, pages = {1 -- 11}, year = {2015}, abstract = {The understanding that optimized components do not automatically lead to energy-efficient systems sets the attention from the single component on the entire technical system. At TU Darmstadt, a new field of research named Technical Operations Research (TOR) has its origin. It combines mathematical and technical know-how for the optimal design of technical systems. We illustrate our optimization approach in a case study for the design of a ventilation system with the ambition to minimize the energy consumption for a temporal distribution of diverse load demands. By combining scaling laws with our optimization methods we find the optimal combination of fans and show the advantage of the use of multiple fans.}, language = {en} } @inproceedings{RauschLeiseEdereretal.2016, author = {Rausch, Lea and Leise, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem}, series = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, booktitle = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, editor = {Papadrakakis, M. and Ppadopoulos, V. and Stefanou, G. and Plevris, V.}, isbn = {978-618-82844-0-1}, pages = {8509 -- 8527}, year = {2016}, abstract = {Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art.}, language = {en} } @inproceedings{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Pelz, Peter F.}, title = {Using mixed-integer programming for the optimal design of water supply networks for slums}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, editor = {Kliewer, Natalia and Ehmke, Jan Fabian and Bornd{\"o}rfer, Ralf}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0 (Print)}, doi = {10.1007/978-3-319-89920-6_68}, pages = {509 -- 516}, year = {2018}, abstract = {The UN sets the goal to ensure access to water and sanitation for all people by 2030. To address this goal, we present a multidisciplinary approach for designing water supply networks for slums in large cities by applying mathematical optimization. The problem is modeled as a mixed-integer linear problem (MILP) aiming to find a network describing the optimal supply infrastructure. To illustrate the approach, we apply it on a small slum cluster in Dhaka, Bangladesh.}, language = {en} } @article{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Meck, Marvin and Pelz, Peter F.}, title = {A holistic concept to design optimal water supply infrastructures for informal settlements using remote sensing data}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, isbn = {2072-4292}, doi = {10.3390/rs10020216}, pages = {1 -- 23}, year = {2018}, abstract = {Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time) and describe how the result of the optimization depends on the entered remote sensing data.}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {Developing a control strategy for booster stations under uncertain load}, series = {Applied Mechanics and Materials}, volume = {807}, journal = {Applied Mechanics and Materials}, number = {807}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, isbn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.807.241}, pages = {241 -- 246}, year = {2015}, abstract = {Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy.}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Lorenz, Ulf and Pelz, Peter F.}, title = {Examination and optimization of a heating circuit for energy-efficient buildings}, series = {Energy Technology}, volume = {4}, journal = {Energy Technology}, number = {1}, publisher = {WILEY-VCH Verlag}, address = {Weinheim}, isbn = {2194-4296}, doi = {10.1002/ente.201500252}, pages = {136 -- 144}, year = {2015}, abstract = {The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortstr{\"o}m reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings.}, language = {en} } @incollection{PfetschAbeleAltherretal.2021, author = {Pfetsch, Marc E. and Abele, Eberhard and Altherr, Lena and B{\"o}lling, Christian and Br{\"o}tz, Nicolas and Dietrich, Ingo and Gally, Tristan and Geßner, Felix and Groche, Peter and Hoppe, Florian and Kirchner, Eckhard and Kloberdanz, Hermann and Knoll, Maximilian and Kolvenbach, Philip and Kuttich-Meinlschmidt, Anja and Leise, Philipp and Lorenz, Ulf and Matei, Alexander and Molitor, Dirk A. and Niessen, Pia and Pelz, Peter F. and Rexer, Manuel and Schmitt, Andreas and Schmitt, Johann M. and Schulte, Fiona and Ulbrich, Stefan and Weigold, Matthias}, title = {Strategies for mastering uncertainty}, series = {Mastering uncertainty in mechanical engineering}, booktitle = {Mastering uncertainty in mechanical engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78353-2}, doi = {10.1007/978-3-030-78354-9_6}, pages = {365 -- 456}, year = {2021}, abstract = {This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems.}, language = {en} } @inproceedings{MuellerSchmittLeiseetal.2021, author = {M{\"u}ller, Tim M. and Schmitt, Andreas and Leise, Philipp and Meck, Tobias and Altherr, Lena and Pelz, Peter F. and Pfetsch, Marc E.}, title = {Validation of an optimized resilient water supply system}, series = {Uncertainty in Mechanical Engineering}, booktitle = {Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-77255-0}, doi = {10.1007/978-3-030-77256-7_7}, pages = {70 -- 80}, year = {2021}, abstract = {Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems.}, language = {en} } @article{MuellerLeiseLorenzetal.2020, author = {M{\"u}ller, Tim M. and Leise, Philipp and Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Optimization and validation of pumping system design and operation for water supply in high-rise buildings}, series = {Optimization and Engineering}, volume = {2021}, journal = {Optimization and Engineering}, number = {22}, publisher = {Springer}, issn = {1573-2924}, doi = {10.1007/s11081-020-09553-4}, pages = {643 -- 686}, year = {2020}, abstract = {The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps' characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer's point of view, keeping in mind the economically important trade-off between investment and operation costs.}, language = {en} } @inproceedings{MuellerAltherrLeiseetal.2020, author = {M{\"u}ller, Tim M. and Altherr, Lena and Leise, Philipp and Pelz, Peter F.}, title = {Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48438-5}, doi = {10.1007/978-3-030-48439-2_58}, pages = {481 -- 488}, year = {2020}, abstract = {Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge.}, language = {en} } @inproceedings{MuellerAltherrAholaetal.2019, author = {M{\"u}ller, Tim M. and Altherr, Lena and Ahola, Marja and Schabel, Samuel and Pelz, Peter F.}, title = {Multi-Criteria optimization of pressure screen systems in paper recycling - balancing quality, yield, energy consumption and system complexity}, series = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, booktitle = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, editor = {Rodrigues, H. C.}, publisher = {Springer International Publishing}, address = {Basel}, isbn = {978-3-319-97773-7}, doi = {10.1007/978-3-319-97773-7_105}, year = {2019}, abstract = {The paper industry is the industry with the third highest energy consumption in the European Union. Using recycled paper instead of fresh fibers for papermaking is less energy consuming and saves resources. However, adhesive contaminants in recycled paper are particularly problematic since they reduce the quality of the resulting paper-product. To remove as many contaminants and at the same time obtain as many valuable fibres as possible, fine screening systems, consisting of multiple interconnected pressure screens, are used. Choosing the best configuration is a non-trivial task: The screens can be interconnected in several ways, and suitable screen designs as well as operational parameters have to be selected. Additionally, one has to face conflicting objectives. In this paper, we present an approach for the multi-criteria optimization of pressure screen systems based on Mixed-Integer Nonlinear Programming. We specifically focus on a clear representation of the trade-off between different objectives.}, language = {en} } @incollection{MuellerAltherrAholaetal.2018, author = {M{\"u}ller, Tim M. and Altherr, Lena and Ahola, Marja and Schabel, Samuel and Pelz, Peter F.}, title = {Optimizing pressure screen systems in paper recycling: optimal system layout, component selection and operation}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-18499-5}, doi = {10.1007/978-3-030-18500-8_44}, pages = {355 -- 361}, year = {2018}, abstract = {Around 60\% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield.}, language = {en} } @inproceedings{MeckMuellerAltherretal.2020, author = {Meck, Marvin M. and M{\"u}ller, Tim M. and Altherr, Lena and Pelz, Peter F.}, title = {Improving an industrial cooling system using MINLP, considering capital and operating costs}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48438-5 (Print)}, doi = {10.1007/978-3-030-48439-2_61}, pages = {505 -- 512}, year = {2020}, abstract = {The chemical industry is one of the most important industrial sectors in Germany in terms of manufacturing revenue. While thermodynamic boundary conditions often restrict the scope for reducing the energy consumption of core processes, secondary processes such as cooling offer scope for energy optimisation. In this contribution, we therefore model and optimise an existing cooling system. The technical boundary conditions of the model are provided by the operators, the German chemical company BASF SE. In order to systematically evaluate different degrees of freedom in topology and operation, we formulate and solve a Mixed-Integer Nonlinear Program (MINLP), and compare our optimisation results with the existing system.}, language = {en} } @inproceedings{LorenzAltherrPelz2019, author = {Lorenz, Imke-Sophie B. and Altherr, Lena and Pelz, Peter F.}, title = {Graph-theoretic resilience analysis of a water distribution system's topology}, series = {World Congress on Resilience, Reliability and Asset Management 2019}, booktitle = {World Congress on Resilience, Reliability and Asset Management 2019}, pages = {106 -- 109}, year = {2019}, abstract = {Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. In practice, the focus is set on the most beneficial maintenance measures and/or capacity adaptations of existing water distribution systems (WDS). Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of WDS, i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, metrics based on graph theory have been proposed. In this study, a promising approach is applied to assess the resilience of the WDS for a district in a major German City. The conducted analysis provides insight into the process of actively influencing the resilience of WDS}, language = {en} }