@article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Antriebssystemanpassungen zur Verwendung von LPG als Flugkraftstoff}, series = {Motortechnische Zeitschrift (MTZ)}, volume = {2022}, journal = {Motortechnische Zeitschrift (MTZ)}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s35146-021-0778-2}, pages = {58 -- 62}, year = {2022}, abstract = {Auch in der allgemeinen Luftfahrt w{\"a}re es w{\"u}nschenswert, die bereits vorhandenen Verbrennungsmotoren mit weniger CO₂-tr{\"a}chtigen Kraftstoffen als dem heute weit verbreiteten Avgas 100LL betreiben zu k{\"o}nnen. Es ist anzunehmen, dass im Vergleich die unter Normalbedingungen gasf{\"o}rmigen Kraftstoffe CNG, LPG oder LNG deutlich weniger Emissionen produzieren. Erforderliche Antriebssystemanpassungen wurden im Rahmen eines Forschungsprojekts an der FH Aachen untersucht.}, language = {de} } @article{FayyaziSardarThomasetal.2023, author = {Fayyazi, Mojgan and Sardar, Paramjotsingh and Thomas, Sumit Infent and Daghigh, Roonak and Jamali, Ali and Esch, Thomas and Kemper, Hans and Langari, Reza and Khayyam, Hamid}, title = {Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles}, volume = {15}, number = {6}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/su15065249}, pages = {38}, year = {2023}, abstract = {Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed.}, language = {en} } @misc{SchmitzSchebitzEsch1997, author = {Schmitz, G{\"u}nter and Schebitz, Michael and Esch, Thomas}, title = {Aus der Ruhelage selbstanziehender elektromagnetischer Aktuator}, year = {1997}, abstract = {Elektromagnetischer Aktuator zur Bet{\"a}tigung eines Stellgliedes (2), mit wenigstens einem Elektromagneten (4) und einem mit dem Stellglied (2) verbundenen Anker (3), der gegen die Kraft einer R{\"u}ckstellfeder (6) aus seiner Ruhelage in Richtung auf den Elektromagneten (4) bewegbar ist, mit einer R{\"u}ckstellfeder (6), die eine nicht lineare, bezogen auf die Ruhelage des Ankers (3) progressiv ansteigende Kennlinie aufweist.}, language = {de} } @inproceedings{VeettilRakshitSchopenetal.2022, author = {Veettil, Yadu Krishna Morassery and Rakshit, Shantam and Schopen, Oliver and Kemper, Hans and Esch, Thomas and Shabani, Bahman}, title = {Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_55}, pages = {296 -- 299}, year = {2022}, abstract = {Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench.}, language = {en} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Automated modal parameter-based anomaly detection under varying wind excitation}, series = {Structural Health Monitoring}, volume = {15}, journal = {Structural Health Monitoring}, number = {6}, publisher = {Sage}, address = {London}, issn = {1475-9217}, doi = {10.1177/1475921716665803}, pages = {1 -- 20}, year = {2016}, abstract = {Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions.}, language = {en} } @article{LaarmannThomaMischetal.2023, author = {Laarmann, Lukas and Thoma, Andreas and Misch, Philipp and R{\"o}th, Thilo and Braun, Carsten and Watkins, Simon and Fard, Mohammad}, title = {Automotive safety approach for future eVTOL vehicles}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer Nature}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00655-0}, pages = {11 Seiten}, year = {2023}, abstract = {The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL's crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented.}, language = {en} } @article{PfaffGidaszewskiSchmidt2020, author = {Pfaff, Raphael and Gidaszewski, Lars and Schmidt, Bernd}, title = {Ber{\"u}cksichtigung von No Fault Found im Diagnose- und Instandhaltungssystem von Schienenfahrzeugen}, series = {ETR - Eisenbahntechnische Rundschau}, journal = {ETR - Eisenbahntechnische Rundschau}, number = {5}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2845}, pages = {56 -- 59}, year = {2020}, abstract = {Intermittierende und nicht reproduzierbare Fehler, auch als No Fault Found bezeichnet, treten in praktisch allen Bereichen auf und sorgen f{\"u}r hohe Kosten. Diese sind h{\"a}ufig auf unpr{\"a}zise Fehlerbeschreibungen zur{\"u}ckzuf{\"u}hren. Im vorliegenden Beitrag werden Anpassungen der Vorgehensweise bei der Entwicklung und Anpassungen des Diagnosesystems vorgeschlagen.}, language = {de} } @article{ThomessenThomaBraun2023, author = {Thomessen, Karolin and Thoma, Andreas and Braun, Carsten}, title = {Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00691-w}, pages = {11 Seiten}, year = {2023}, abstract = {Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6\% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9\% in city-like worlds and reduces energy consumption by 28\%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV.}, language = {en} } @misc{EickmannEschFunkeetal.2014, author = {Eickmann, Matthias and Esch, Thomas and Funke, Harald and Abanteriba, Sylvester and Roosen, Petra}, title = {Biofuels in Aviation - Safety Implications of Bio-Ethanol Usage in General Aviation Aircraft}, year = {2014}, abstract = {Up in the clouds and above fuels and construction materials must be very carefully selected to ensure a smooth flight and touchdown. Out of around 38,000 single and dual-engined propeller aeroplanes, roughly a third are affected by a new trend in the fuel sector that may lead to operating troubles or even emergency landings: The admixture of bio-ethanol to conventional gasoline. Experiences with these fuels may be projected to alternative mixtures containing new components.}, language = {en} } @article{Pfaff2023, author = {Pfaff, Raphael}, title = {Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach}, series = {Railway Engineering Science}, volume = {31}, journal = {Railway Engineering Science}, number = {2}, publisher = {SpringerOpen}, issn = {2662-4753 (eISSN)}, doi = {10.1007/s40534-023-00303-7}, pages = {135 -- 144}, year = {2023}, abstract = {The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.}, language = {en} } @article{SerrorHackHenzeetal.2021, author = {Serror, Martin and Hack, Sacha and Henze, Martin and Schuba, Marko and Wehrle, Klaus}, title = {Challenges and Opportunities in Securing the Industrial Internet of Things}, series = {IEEE Transactions on Industrial Informatics}, volume = {17}, journal = {IEEE Transactions on Industrial Informatics}, number = {5}, publisher = {IEEE}, address = {New York}, issn = {1941-0050}, doi = {10.1109/TII.2020.3023507}, pages = {2985 -- 2996}, year = {2021}, language = {en} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} } @article{RuppSchulzeKuperjans2018, author = {Rupp, Matthias and Schulze, Sven and Kuperjans, Isabel}, title = {Comparative life cycle analysis of conventional and hybrid heavy-duty trucks}, series = {World electric vehicle journal}, volume = {9}, journal = {World electric vehicle journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2032-6653}, doi = {10.3390/wevj9020033}, pages = {Article No. 33}, year = {2018}, abstract = {Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle's environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance.}, language = {en} } @inproceedings{KemperHellenbroichEsch2009, author = {Kemper, Hans and Hellenbroich, Gereon and Esch, Thomas}, title = {Concept of an innovative passenger-car hybrid drive for European driving conditions}, series = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, booktitle = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, publisher = {Gesamtzentrum f{\"u}r Verkehr (GZVB)}, address = {Braunschweig}, isbn = {978-3-937655-20-8}, pages = {264 -- 287}, year = {2009}, abstract = {The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 \% savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition.}, language = {en} } @inproceedings{SchulteSchwagerFrantzetal.2022, author = {Schulte, Jonas and Schwager, Christian and Frantz, Cathy and Schloms, Felix and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios}, series = {SolarPACES conference proceedings}, booktitle = {SolarPACES conference proceedings}, number = {Vol. 1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.693}, pages = {9 Seiten}, year = {2022}, abstract = {A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so.}, language = {en} } @incollection{SchubaHoefken2022, author = {Schuba, Marko and H{\"o}fken, Hans-Wilhelm}, title = {Cybersicherheit in Produktion, Automotive und intelligenten Geb{\"a}uden}, series = {IT-Sicherheit - Technologien und Best Practices f{\"u}r die Umsetzung im Unternehmen}, booktitle = {IT-Sicherheit - Technologien und Best Practices f{\"u}r die Umsetzung im Unternehmen}, publisher = {Carl Hanser Verlag}, address = {M{\"u}nchen}, isbn = {978-3-446-47223-5}, doi = {10.3139/9783446473478.012}, pages = {193 -- 218}, year = {2022}, language = {de} } @inproceedings{SchopenKemperEsch2021, author = {Schopen, Oliver and Kemper, Hans and Esch, Thomas}, title = {Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, publisher = {FH Joanneum}, address = {Graz}, isbn = {978-3-902103-94-9}, pages = {45 -- 46}, year = {2021}, abstract = {In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device.}, language = {en} } @inproceedings{CaminosSchmitzAttietal.2022, author = {Caminos, Ricardo Alexander Chico and Schmitz, Pascal and Atti, Vikrama and Mahdi, Zahra and Teixeira Boura, Cristiano Jos{\´e} and Sattler, Johannes Christoph and Herrmann, Ulf and Hilger, Patrick and Dieckmann, Simon}, title = {Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086262}, pages = {8 Seiten}, year = {2022}, abstract = {The Solar-Institut J{\"u}lich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed.}, language = {en} } @inproceedings{GrundAltherr2023, author = {Grund, Raphael M. and Altherr, Lena}, title = {Development of an open source energy disaggregation tool for the home automation platform Home Assistant}, series = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, booktitle = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-01-6}, doi = {10.33968/2023.02}, pages = {11 -- 20}, year = {2023}, abstract = {In order to reduce energy consumption of homes, it is important to make transparent which devices consume how much energy. However, power consumption is often only monitored aggregated at the house energy meter. Disaggregating this power consumption into the contributions of individual devices can be achieved using Machine Learning. Our work aims at making state of the art disaggregation algorithms accessibe for users of the open source home automation platform Home Assistant.}, language = {en} } @inproceedings{SattlerSchneiderAngeleetal.2022, author = {Sattler, Johannes Christoph and Schneider, Iesse Peer and Angele, Florian and Atti, Vikrama and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Development of heliostat field calibration methods: Theory and experimental test results}, series = {SolarPACES conference proceedings}, booktitle = {SolarPACES conference proceedings}, number = {Vol. 1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.678}, pages = {9 Seiten}, year = {2022}, abstract = {In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut J{\"u}lich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy.}, language = {en} }