@article{HacklAndermahrStaatetal.2017, author = {Hackl, M. and Andermahr, J. and Staat, Manfred and Bremer, I. and Borggrefe, J. and Prescher, A. and M{\"u}ller, L. P. and Wegmann, K.}, title = {Suture button reconstruction of the central band of the interosseous membrane in Essex-Lopresti lesions: a comparative biomechanical investigation}, series = {The Journal of Hand Surgery (European Volume)}, volume = {42}, journal = {The Journal of Hand Surgery (European Volume)}, number = {4}, publisher = {Sage}, address = {London}, issn = {2043-6289 (Online)}, doi = {10.1177/1753193416665943}, pages = {370 -- 376}, year = {2017}, language = {en} } @article{BhattaraiJabbariAndingetal.2018, author = {Bhattarai, Aroj and Jabbari, Medisa and Anding, Ralf and Staat, Manfred}, title = {Surgical treatment of vaginal vault prolapse using different prosthetic mesh implants: a finite element analysis}, series = {tm - Technisches Messen}, volume = {85}, journal = {tm - Technisches Messen}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7113}, doi = {10.1515/teme-2017-0115}, pages = {331 -- 342}, year = {2018}, abstract = {Particularly multiparous elderly women may suffer from vaginal vault prolapse after hysterectomy due to weak support from lax apical ligaments. A decreased amount of estrogen and progesterone in older age is assumed to remodel the collagen thereby reducing tissue stiffness. Sacrocolpopexy is either performed as open or laparoscopic surgery using prosthetic mesh implants to substitute lax ligaments. Y-shaped mesh models (DynaMesh, Gynemesh, and Ultrapro) are implanted in a 3D female pelvic floor finite element model in the extraperitoneal space from the vaginal cuff to the first sacral (S1) bone below promontory. Numerical simulations are conducted during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues are modeled as incompressible, isotropic hyperelastic materials whereas the meshes are modeled either as orthotropic linear elastic or as isotropic hyperlastic materials. The positions of the vaginal cuff and the bladder base are calculated from the pubococcygeal line for female pelvic floor at rest, for prolapse and after repair using the three meshes. Due to mesh mechanics and mesh pore deformation along the loaded direction, the DynaMesh with regular rectangular mesh pores is found to provide better mechanical support to the organs than the Gynemesh and the Ultrapro with irregular hexagonal mesh pores. Insbesondere {\"a}ltere, mehrgeb{\"a}hrende Frauen leiden h{\"a}ufiger an einem Scheidenvorfall nach einer Hysterektomie aufgrund der schwachen Unterst{\"u}tzung durch laxe apikale B{\"a}nder. Es wird angenommen, dass eine verringerte Menge an {\"O}strogen und Progesteron im h{\"o}heren Alter das Kollagen umformt, wodurch die Gewebesteifigkeit reduziert wird. Die Sakrokolpopexie ist eine offene oder laparoskopische Operation, die mit prothetischen Netzimplantaten durchgef{\"u}hrt wird, um laxe B{\"a}nder zu ersetzen. Y-f{\"o}rmige Netzmodelle (DynaMesh, Gynemesh und Ultrapro) werden in einem 3D-Modell des weiblichen Beckenbodens im extraperitonealen Raum vom Vaginalstumpf bis zum Promontorium implantiert. Numerische Simulationen werden w{\"a}hrend des Valsalva-Man{\"o}vers mit geschw{\"a}chtem Gewebe durchgef{\"u}hrt, das durch eine reduzierte Gewebesteifigkeit modelliert wird. Die Gewebe werden als inkompressible, isotrop hyperelastische Materialien modelliert, w{\"a}hrend die Netze entweder als orthotrope linear elastische oder als isotrope hyperlastische Materialien modelliert werden. Die Positionen des Vaginalstumpfs, der Blase und der Harnr{\"o}hrenachse werden anhand der Pubococcygeallinie aus der Ruhelage, f{\"u}r den Prolaps und nach der Reparatur unter Verwendung der drei Netze berechnet. Aufgrund der Netzmechanik und der Netzporenverformung bietet das DynaMesh mit regelm{\"a}ßigen rechteckigen Netzporen eine bessere mechanische Unterst{\"u}tzung und eine Neupositionierung des Scheidengew{\"o}lbes, der Blase und der Urethraachse als Gynemesh und Ultrapro mit unregelm{\"a}ßigen hexagonalen Netzporen.}, language = {en} } @article{StaatHeitzer1999, author = {Staat, Manfred and Heitzer, M.}, title = {Structural Reliability Analysis of Elasto-Plastic Structures}, series = {Safety and reliability : proceedings of ESREL '99, the Tenth European Conference on Safety and Reliability, Munich-Garching, Germany, 13 - 17 September 1999 / Schu{\"e}ller, G. I.; Kafka, P. [eds]}, journal = {Safety and reliability : proceedings of ESREL '99, the Tenth European Conference on Safety and Reliability, Munich-Garching, Germany, 13 - 17 September 1999 / Schu{\"e}ller, G. I.; Kafka, P. [eds]}, publisher = {Balkema}, address = {Rotterdam}, isbn = {90-5809-109-0}, pages = {513 -- 518}, year = {1999}, language = {en} } @article{FrotscherStaat2014, author = {Frotscher, Ralf and Staat, Manfred}, title = {Stresses produced by different textile mesh implants in a tissue equivalent}, series = {BioNanoMaterials}, volume = {15}, journal = {BioNanoMaterials}, number = {1-2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2191-4672 (E-Journal); 2193-066X (E-Journal); 0011-8656 (Print); 1616-0177 (Print); 2193-0651 (Print)}, doi = {10.1515/bnm-2014-0003}, pages = {25 -- 30}, year = {2014}, abstract = {Two single-incision mini-slings used for treating urinary incontinence in women are compared with respect to the stresses they produce in their surrounding tissue. In an earlier paper we experimentally observed that these implants produce considerably different stress distributions in a muscle tissue equivalent. Here we perform 2D finite element analyses to compare the shear stresses and normal stresses in the tissue equivalent for the two meshes and to investigate their failure behavior. The results clearly show that the Gynecare TVT fails for increasing loads in a zipper-like manner because it gradually debonds from the surrounding tissue. Contrary to that, the tissue at the ends of the DynaMesh-SIS direct may rupture but only at higher loads. The simulation results are in good agreement with the experimental observations thus the computational model helps to interpret the experimental results and provides a tool for qualitative evaluation of mesh implants.}, language = {en} } @inproceedings{StaatTran2022, author = {Staat, Manfred and Tran, Ngoc Trinh}, title = {Strain based brittle failure criteria for rocks}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {500 -- 509}, year = {2022}, abstract = {When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These "paradox" fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @article{Staat2002, author = {Staat, Manfred}, title = {Some Achievements of the European Project LISA for FEM Based Limit and Shakedown Analysis}, series = {Computational mechanics : developments and applications, 2002 : presented at the 2002 ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia, Canada, August 5 - 9. / Badie, N. [ed]}, journal = {Computational mechanics : developments and applications, 2002 : presented at the 2002 ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia, Canada, August 5 - 9. / Badie, N. [ed]}, publisher = {American Society of Mechanical Engineers}, address = {New York}, isbn = {0791846520}, pages = {177 -- 185}, year = {2002}, language = {en} } @article{StaatBaroudTopcuetal.2008, author = {Staat, Manfred and Baroud, G. and Topcu, M. and Sponagel, Stefan}, title = {Soft Materials in Technology and Biology - Characteristics, Properties, and Parameter Identification}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {253 -- 315}, year = {2008}, language = {en} } @inproceedings{StaatDuong2016, author = {Staat, Manfred and Duong, Minh Tuan}, title = {Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies}, series = {Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2}, booktitle = {Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2}, pages = {440 -- 445}, year = {2016}, abstract = {The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials. Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects.}, language = {en} } @inproceedings{FrotscherGossmannTemizArtmannetal.2013, author = {Frotscher, Ralf and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, booktitle = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, publisher = {Verl. d. Weißruss. Staatl. Univ.}, address = {Minsk}, organization = {International Conference Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures <1, 2013, Minsk>}, isbn = {978-985-553-135-8}, pages = {165 -- 167}, year = {2013}, language = {en} } @incollection{FrotscherGossmannRaatschenetal.2015, author = {Frotscher, Ralf and Goßmann, Matthias and Raatschen, Hans-J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, booktitle = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-319-02534-6 ; 978-3-319-02535-3}, pages = {187 -- 212}, year = {2015}, abstract = {We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments.}, language = {en} } @inproceedings{FrotscherDuongStaat2015, author = {Frotscher, Ralf and Duong, Minh Tuan and Staat, Manfred}, title = {Simulating beating cardiomyocytes with electromechanical coupling}, series = {II. International Conference on Biomedical Technology : 28-30 October 2015 Hannover, Germany / T. Lenarz, P. Wriggers (Eds.)}, booktitle = {II. International Conference on Biomedical Technology : 28-30 October 2015 Hannover, Germany / T. Lenarz, P. Wriggers (Eds.)}, organization = {International Conference on Biomedical Technology <2, 2015, Hannover>}, pages = {1 -- 2}, year = {2015}, language = {en} } @inproceedings{BhattaraiFrotscherStaat2016, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Significance of fibre geometry on passive-active response of pelvic muscles to evaluate pelvic dysfunction}, series = {BioMedWomen: Proceedings of the international conference on clinical and bioengineering for women's health}, booktitle = {BioMedWomen: Proceedings of the international conference on clinical and bioengineering for women's health}, editor = {Natal Jorge, Renato}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {978-1-138-02910-1}, pages = {185 -- 188}, year = {2016}, language = {en} } @article{HacklKahmannWegmannetal.2016, author = {Hackl, Michael and Kahmann, Stephanie Lucina and Wegmann, Kilian and Ries, Christian and Staat, Manfred and M{\"u}ller, Lars-Peter}, title = {Shortening osteotomy of the proximal radius — a treatment option for isolated osteoarthritis of the lateral column of the elbow joint?}, series = {Knee surgery, sports traumatology, arthroscopy}, volume = {Volume 24}, journal = {Knee surgery, sports traumatology, arthroscopy}, number = {Supplement 1}, publisher = {Springer}, address = {Berlin}, issn = {0942-2056}, doi = {10.1007/s00167-016-4080-7}, pages = {128 -- 129}, year = {2016}, abstract = {Treatment of posttraumatic osteoarthritis of the radial column of the elbow joint remains a challenging yet common issue. While partial joint replacement leads to high revision rates, radial head excision has shown to severely increase joint instability. Shortening osteotomy of the radius could be an option to decrease the contact pressure of the radiohumeral joint and thereby pain levels without causing valgus instability. Hence, the aim of this biomechanical study was to evaluate the effects of radial shortening on axial load distribution and valgus stability of the elbow joint.}, language = {en} } @article{StaatHeitzerReinersetal.2003, author = {Staat, Manfred and Heitzer, M. and Reiners, H. and Schubert, F.}, title = {Shakedown and ratchetting under tension-torsion loadings: analysis and experiments}, series = {Nuclear Engineering and Design. 225 (2003), H. 1}, journal = {Nuclear Engineering and Design. 225 (2003), H. 1}, isbn = {0029-5493}, pages = {11 -- 26}, year = {2003}, language = {en} } @article{Staat2003, author = {Staat, Manfred}, title = {Shakedown and ratchetting under tension-torsion loadings: analysis and experiments}, year = {2003}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.}, subject = {Einspielen }, language = {en} } @incollection{TranTranMatthiesetal.2017, author = {Tran, N. T. and Tran, Thanh Ngoc and Matthies, M. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown Analysis Under Stochastic Uncertainty by Chance Constrained Programming}, series = {Advances in Direct Methods for Materials and Structures}, booktitle = {Advances in Direct Methods for Materials and Structures}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-59810-9}, doi = {10.1007/978-3-319-59810-9_6}, pages = {85 -- 103}, year = {2017}, abstract = {In this paper we propose a stochastic programming method to analyse limit and shakedown of structures under uncertainty condition of strength. Based on the duality theory, the shakedown load multiplier formulated by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier formulated by static theorem. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) with three-node linear triangular elements is used for structural analysis.}, language = {en} } @article{TranStaat2010, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Shakedown analysis of two dimensional structures by an edge-based smoothed finite element method}, pages = {1 -- 7}, year = {2010}, language = {en} } @article{VuStaat2007, author = {Vu, Duc Khoi and Staat, Manfred}, title = {Shakedown analysis of structures made of materials with temperature-dependent yield stress}, series = {International Journal of Solids and Structures. 44 (2007), H. 13}, journal = {International Journal of Solids and Structures. 44 (2007), H. 13}, isbn = {0020-7683}, pages = {4524 -- 4540}, year = {2007}, language = {en} } @incollection{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Shakedown analysis of Reissner-Mindlin plates using the edge-based smoothed finite element method}, series = {Direct methods for limit states in structures and materials / Dieter Weichert ; Alan Ponter, ed.}, booktitle = {Direct methods for limit states in structures and materials / Dieter Weichert ; Alan Ponter, ed.}, publisher = {Springer}, address = {Dordrecht [u.a.]}, isbn = {978-94-007-6826-0 (Print) 978-94-007-6827-7 (Online)}, doi = {10.1007/978-94-007-6827-7_5}, pages = {101 -- 117}, year = {2014}, abstract = {This paper concerns the development of a primal-dual algorithm for limit and shakedown analysis of Reissner-Mindlin plates made of von Mises material. At each optimization iteration, the lower bound of the shakedown load multiplier is calculated simultaneously with the upper bound using the duality theory. An edge-based smoothed finite element method (ES-FEM) combined with the discrete shear gap (DSG) technique is used to improve the accuracy of the solutions and to avoid the transverse shear locking behaviour. The method not only possesses all inherent features of convergence and accuracy from ES-FEM, but also ensures that the total number of variables in the optimization problem is kept to a minimum compared with the standard finite element formulation. Numerical examples are presented to demonstrate the effectiveness of the present method.}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, H. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown analysis of plate bending analysis under stochastic uncertainty by chance constrained programming}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} }