@article{BegingLeinhosJablonskietal.2015, author = {Beging, Stefan and Leinhos, Marcel and Jablonski, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Studying the spatially resolved immobilisation of enzymes on a capacitive field-effect structure by means of nano-spotting}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431891}, pages = {1353 -- 1358}, year = {2015}, language = {en} } @article{OberlaenderJildehKirchneretal.2015, author = {Oberl{\"a}nder, Jan and Jildeh, Zaid B. and Kirchner, Patrick and Wendeler, Luisa and Bromm, Alexander and Iken, Heiko and Wagner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Study of Interdigitated Electrode Arrays Using Experiments and Finite Element Models for the Evaluation of Sterilization Processes}, series = {Sensors}, volume = {15}, journal = {Sensors}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s151026115}, pages = {26115 -- 26127}, year = {2015}, abstract = {In this work, a sensor to evaluate sterilization processes with hydrogen peroxide vapor has been characterized. Experimental, analytical and numerical methods were applied to evaluate and study the sensor behavior. The sensor set-up is based on planar interdigitated electrodes. The interdigitated electrode structure consists of 614 electrode fingers spanning over a total sensing area of 20 mm2. Sensor measurements were conducted with and without microbiological spores as well as after an industrial sterilization protocol. The measurements were verified using an analytical expression based on a first-order elliptical integral. A model based on the finite element method with periodic boundary conditions in two dimensions was developed and utilized to validate the experimental findings.}, language = {en} } @article{SimonisLuethWangetal.2003, author = {Simonis, A. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {Strategies of miniaturised reference electrodes integrated in a silicon-based „one chip" pH sensor}, series = {Sensors. 3 (2003), H. 9}, journal = {Sensors. 3 (2003), H. 9}, isbn = {1424-8220}, pages = {330 -- 339}, year = {2003}, language = {en} } @article{OberlaenderKirchnerKeusgenetal.2015, author = {Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.06.126}, pages = {130 -- 136}, year = {2015}, abstract = {The sterilization of packages in aseptic food processes is highly significant to maintain a consumer-safe product with extended shelf-life. Today, the sterilization of food packages is predominantly accomplished by gaseous hydrogen peroxide (H2O2) in combination with heat. In order to monitor this sterilization process, calorimetric gas sensors as differential set-up of two platinum temperature sensors representing a catalytically active (additionally deposition of MnO2) and a passive segment have been recently developed. The temperature rise of the exothermic decomposition serves as an indicator of the present H2O2 concentration. In the present work, a theoretical approach considering the sensor's thermochemistry and physical transport phenomena was formulated to evaluate the temperature rise based on the energy content of gaseous H2O2. In a further part of this work, three polymers have been analyzed with respect to their application as passivation materials. The examined polymers are photoresist SU-8, perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). Thermal analyses by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been conducted to determine the operation limits of the polymers. The overall chemical resistance and stability of the polymers against the harsh environmental conditions during the sterilization process have been examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).}, language = {en} } @article{KeusgenSchoening2004, author = {Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Strategies for biosensoric detection of potential drugs in nature}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1004 -- 1005}, year = {2004}, language = {en} } @article{OberlaenderMayerGreeffetal.2018, author = {Oberl{\"a}nder, Jan and Mayer, Marlena and Greeff, Anton and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes}, series = {Biosensors and Bioelectronics}, volume = {104}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2017.12.045}, pages = {87 -- 94}, year = {2018}, abstract = {In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization.}, language = {en} } @article{VlasovMourzinaLeginetal.2002, author = {Vlasov, Y. G. and Mourzina, Y. G. and Legin, A. V. and Ermelenko, Y. E. and Schubert, J. and Sch{\"o}ning, Michael Josef and L{\"u}th, H.}, title = {Solid-state thin film sensors based on chalcogenide materials prepared by planar technology and pulsed laser deposition}, series = {Russian Journal of Applied Chemistry. 75 (2002), H. 3}, journal = {Russian Journal of Applied Chemistry. 75 (2002), H. 3}, isbn = {1070-4272}, pages = {351 -- 356}, year = {2002}, language = {en} } @article{FuruichiYoshinobuErmelenkoetal.2001, author = {Furuichi, K. and Yoshinobu, T. and Ermelenko, T. and Mourzina, Y. and Iwasaki, H. and Sch{\"o}ning, Michael Josef}, title = {Simultaneous visualization of multiple ions by the chemical imaging sensor}, series = {Proceedings of the 5th East Asian Conference on Chemical Sensors; the 33rd Chemical Sensor Symposium : December 4 - 7, 2001, Huis Ten Bosch, Sasebo-shi, Nagasaki, Japan / Japan Association of Chemical Sensors; the Electrochemical Society of Japan}, journal = {Proceedings of the 5th East Asian Conference on Chemical Sensors; the 33rd Chemical Sensor Symposium : December 4 - 7, 2001, Huis Ten Bosch, Sasebo-shi, Nagasaki, Japan / Japan Association of Chemical Sensors; the Electrochemical Society of Japan}, publisher = {Japan Association of Chemical Sensors}, address = {Kasuga, Fukuoka-ken}, pages = {399 -- 401}, year = {2001}, language = {en} } @article{TurekHeidenGuoetal.2010, author = {Turek, Monik and Heiden, Wolfgang and Guo, Sharon and Riesen, Alfred and Schubert, J{\"u}rgen and Zander, Willi and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Simultaneous detection of cyanide and heavy metals for environmental analysis by means of µISEs}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {817 -- 823}, year = {2010}, language = {en} } @article{JildehWagnerSchoeningetal.2015, author = {Jildeh, Zaid B. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Pieper, Martin}, title = {Simulating the electromagnetic-thermal treatment of thin aluminium layers for adhesion improvement}, series = {Physica status solidi (a)}, volume = {Vol. 212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431893}, pages = {1234 -- 1241}, year = {2015}, abstract = {A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed.}, language = {en} } @article{Schoening2003, author = {Sch{\"o}ning, Michael Josef}, title = {Silicon-based field-effect structures - From dielectrics to bioelectronics}, series = {Dielectrics in emerging technologies : proceedings of the international symposium ; [papers presented at the First International Symposium on Science and Technology of Dielectrics in Emerging Fields held from 27th April to 2nd May 2003 in Paris, France] / sponsoring divisions: Dielectric Science and Technology, Electronics. Ed.: D. Misra.}, journal = {Dielectrics in emerging technologies : proceedings of the international symposium ; [papers presented at the First International Symposium on Science and Technology of Dielectrics in Emerging Fields held from 27th April to 2nd May 2003 in Paris, France] / sponsoring divisions: Dielectric Science and Technology, Electronics. Ed.: D. Misra.}, publisher = {Electrochemical Society}, address = {Pennington, NJ}, isbn = {1-56677-346-6}, pages = {31 -- 37}, year = {2003}, language = {en} } @article{SchoeningPoghossian2009, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Silicon-based field-effect devices with nanostructured surfaces for bio-/chemical sensing}, series = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, journal = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, pages = {51 -- 53}, year = {2009}, language = {en} } @article{SchoeningPoghossian2008, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Silicon-based field-effect devices for (bio-)chemical sensing}, series = {International Conference on Advanced Semiconductor Devices and Microsystems, 2008. ASDAM 2008}, journal = {International Conference on Advanced Semiconductor Devices and Microsystems, 2008. ASDAM 2008}, address = {Smolenice, Slovakia}, isbn = {978-1-4244-2325-5}, pages = {31 -- 38}, year = {2008}, language = {en} } @article{Schoening2003, author = {Sch{\"o}ning, Michael Josef}, title = {Silicon-based biochemical sensors}, series = {CNI - The Center of Nanoelectronic Systems for Information Technology}, journal = {CNI - The Center of Nanoelectronic Systems for Information Technology}, publisher = {Foschungszentrum J{\"u}lich}, pages = {165 -- 170}, year = {2003}, language = {en} } @article{Schoening2000, author = {Sch{\"o}ning, Michael Josef}, title = {Silicon recognizes biochemical parameters: Microchips for analytical sensor applications}, series = {American Laboratory. 32 (2000), H. 16}, journal = {American Laboratory. 32 (2000), H. 16}, isbn = {0044-7749}, pages = {24 -- 31}, year = {2000}, language = {en} } @article{SchoeningKloockKnobbeetal.2004, author = {Sch{\"o}ning, Michael Josef and Kloock, Joachim P. and Knobbe, D.-T. and R{\"a}de, J. and Keusgen, M.}, title = {Silicon field-effect biosensor for cyanide detection}, series = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, journal = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, publisher = {Japan Association of Chemical Sensors}, address = {Fukuoka}, pages = {98 -- 99}, year = {2004}, language = {en} } @article{SchusserKrischerMolinetal.2015, author = {Schusser, Sebastian and Krischer, M. and Molin, D. G. M. and Akker, N. M. S. van den and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Sensor System for in-situ and Real-time Monitoring of Polymer (bio) degradation}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.815}, pages = {948 -- 951}, year = {2015}, abstract = {A sensor system for investigating (bio)degradationprocesses of polymers is presented. The system utilizes semiconductor field-effect sensors and is capable of monitoring the degradation process in-situ and in real-time. The degradation of the polymer poly(d,l-lactic acid) is exemplarily monitored in solutions with different pH value, pH-buffer solution containing the model enzyme lipase from Rhizomucormiehei and cell-culture medium containing supernatants from stimulated and non-stimulated THP-1-derived macrophages mimicking activation of the immune system.}, language = {en} } @article{CornelisGivanoudiYongabietal.2019, author = {Cornelis, Peter and Givanoudi, Stella and Yongabi, Derick and Iken, Heiko and Duw{\´e}, Sam and Deschaume, Olivier and Robbens, Johan and Dedecker, Peter and Bartic, Carmen and W{\"u}bbenhorst, Michael and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method}, series = {Biosensors and Bioelectronics}, volume = {136}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.026}, pages = {97 -- 105}, year = {2019}, language = {en} } @article{WuPoghossianBronderetal.2016, author = {Wu, Chunsheng and Poghossian, Arshak and Bronder, Thomas and Sch{\"o}ning, Michael Josef}, title = {Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor}, series = {Sensors and Actuators B: Chemical}, journal = {Sensors and Actuators B: Chemical}, number = {229}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.02.004}, pages = {506 -- 512}, year = {2016}, abstract = {A multi-spot light-addressable potentiometric sensor (LAPS), which belongs to the family of semiconductor field-effect devices, was applied for label-free detection of double-stranded deoxyribonucleic acid (dsDNA) molecules by their intrinsic molecular charge. To reduce the distance between the DNA charge and sensor surface and thus, to enhance the electrostatic coupling between the dsDNA molecules and the LAPS, the negatively charged dsDNA molecules were electrostatically adsorbed onto the gate surface of the LAPS covered with a positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)). The surface potential changes in each spot of the LAPS, induced by the layer-by-layer adsorption of a PAH/dsDNA bilayer, were recorded by means of photocurrent-voltage and constant-photocurrent measurements. In addition, the surface morphology of the gate surface before and after consecutive electrostatic adsorption of PAH and dsDNA layers was studied by atomic force microscopy measurements. Moreover, fluorescence microscopy was used to verify the successful adsorption of dsDNA molecules onto the PAH-modified LAPS surface. A high sensor signal of 25 mV was registered after adsorption of 10 nM dsDNA molecules. The lower detection limit is down to 0.1 nM dsDNA. The obtained results demonstrate that the PAH-modified LAPS device provides a convenient and rapid platform for the direct label-free electrical detection of in-solution hybridized dsDNA molecules.}, language = {en} } @article{PoghossianAbouzarChristiaensetal.2008, author = {Poghossian, Arshak and Abouzar, Maryam H. and Christiaens, P. and Williams, O. A. and Haenen, K. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors}, series = {Journal of Contemporary Physics. 43 (2008), H. 2}, journal = {Journal of Contemporary Physics. 43 (2008), H. 2}, isbn = {1934-9378}, pages = {77 -- 81}, year = {2008}, language = {en} }