@article{VoigtSchroeterJuergenetal.2013, author = {Voigt, Birgit and Schroeter, Rebecca and J{\"u}rgen, Britta and Albrecht, Dirk and Evers, Stefan and Bongaerts, Johannes and Maurer, Karl-Heinz and Schweder, Thomas and Hecker, Michael}, title = {The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon}, series = {Proteomics}, volume = {Vol. 13}, journal = {Proteomics}, number = {Iss. 14}, publisher = {Wiley}, address = {Weinheim}, issn = {1615-9861 (E-Journal); 1615-9853 (Print)}, pages = {2140 -- 2146}, year = {2013}, language = {en} } @article{KrollLudwigs2007, author = {Kroll-Ludwigs, Kathrin}, title = {The Reform of German Maintenance Law}, series = {The International Survey of Family Law}, journal = {The International Survey of Family Law}, pages = {85 -- 100}, year = {2007}, language = {en} } @article{BlomeWilson2005, author = {Blome, Hans-Joachim and Wilson, Thomas L.}, title = {The quantum temperature of accelerating cosmological models of an entangled Universe}, series = {Advances in Space Research. 35 (2005), H. 1}, journal = {Advances in Space Research. 35 (2005), H. 1}, isbn = {0273-1177}, pages = {111 -- 115}, year = {2005}, language = {en} } @article{MartinHardtMeissburgeretal.1983, author = {Martin, Siegfried A. and Hardt, Arno and Meissburger, J{\"u}rgen and Berg, Georg P. A. and Hacker, Ulrich and H{\"u}rlimann, Werner and R{\"o}mer, Josef G. M. and Sagefka, Thomas and Retz, Adolf and Schult, Otto W. B.}, title = {The QQDDQ magnet spectrometer "BIG KARL"}, series = {Nuclear instruments and methods in physics research. Vol. 214, iss. 2-3}, journal = {Nuclear instruments and methods in physics research. Vol. 214, iss. 2-3}, issn = {0029-554x (E-Journal); 1872-9606 (E-Journal); 0167-5087 (Print)}, pages = {281 -- 303}, year = {1983}, language = {en} } @article{StulpeBjelakovic2005, author = {Stulpe, Werner and Bjelakovic, Igor}, title = {The Projective Hilbert Space as a Classical Phase Space for Nonrelativistic Quantum Dynamics. Bjelakovic, Igor; Stulpe, Werner}, series = {International Journal of Theoretical Physics. 44 (2005), H. 11}, journal = {International Journal of Theoretical Physics. 44 (2005), H. 11}, isbn = {1572-9575}, pages = {2041 -- 2049}, year = {2005}, language = {en} } @article{BlomePriester1987, author = {Blome, Hans-Joachim and Priester, Wolfgang}, title = {The problem of the primeval explosion: 'Big bang' or 'big bounce'? I}, series = {Sterne und Weltraum. 26 (1987)}, journal = {Sterne und Weltraum. 26 (1987)}, isbn = {0039-1263}, pages = {83 -- 89}, year = {1987}, language = {en} } @article{PrielmeierLangSpeedyetal.1988, author = {Prielmeier, Franz and Lang, E. W. and Speedy, R. J. and L{\"u}demann, H.-D.}, title = {The pressure Dependence of Self Diffusion in Supercooled Light and Heavy Water / F.X. Prielmeier, E .W. Lang, R. J. Speedy, H.-D. L{\"u}demann}, series = {Berichte der Bunsen-Gesellschaft f{\"u}r Physikalische Chemie. 92 (1988)}, journal = {Berichte der Bunsen-Gesellschaft f{\"u}r Physikalische Chemie. 92 (1988)}, isbn = {0005-9021}, pages = {1111}, year = {1988}, language = {en} } @article{EggertKnackstedtFleischeretal.2013, author = {Eggert, Mathias and Knackstedt, Ralf and Fleischer, Stefan and Becker, J{\"o}rg}, title = {The Potential of Configurative Reference Modeling for Business to Government Reporting - A Modeling Technique and its Evaluation}, series = {e-Service Journal}, volume = {9}, journal = {e-Service Journal}, number = {1}, publisher = {Indiana University Press}, address = {Bloomington}, issn = {1528-8234}, pages = {28 -- 59}, year = {2013}, language = {en} } @article{BlomeKosbow2005, author = {Blome, Hans-Joachim and Kosbow, Michael}, title = {The Pioneer Anomaly in the context of non-Newtonian Gravity}, series = {International Astronautical Congress : final papers : October 17-21, 2005, Fukuoka, Japan}, journal = {International Astronautical Congress : final papers : October 17-21, 2005, Fukuoka, Japan}, publisher = {International Astronautical Federation}, address = {Paris}, pages = {20 -- 20}, year = {2005}, language = {en} } @article{WilsonBlome2009, author = {Wilson, T. L. and Blome, Hans-Joachim}, title = {The Pioneer anomaly and a rotating G{\"o}del universe}, series = {Advances in Space Research}, volume = {44}, journal = {Advances in Space Research}, number = {11}, isbn = {0273-1177}, pages = {1345 -- 1353}, year = {2009}, language = {en} } @article{WilsonWilsonScheeretal.2017, author = {Wilson, Ian D. and Wilson, Claire E. and Scheer, Nico and Dickie, A.P. and Schreiter, K. and Wilson, E. M. and Riley, R. J. and Wehr, R. and Bial, J.}, title = {The Pharmacokinetics and Metabolism of Lumiracoxib in Chimeric Humanized and Murinized FRG Mice}, series = {Biochemical pharmacology}, volume = {Volume 135}, journal = {Biochemical pharmacology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2968}, doi = {10.1016/j.bcp.2017.03.015}, pages = {139 -- 150}, year = {2017}, language = {en} } @article{WilsonDickieSchreiteretal.2018, author = {Wilson, C. E. and Dickie, A. P. and Schreiter, K. and Wehr, R. and Wilson, E. M. and Bial, J. and Scheer, Nico and Wilson, I. D. and Riley, R. J.}, title = {The pharmacokinetics and metabolism of diclofenac in chimeric humanized and murinized FRG mice}, series = {Archives of Toxicology}, volume = {92}, journal = {Archives of Toxicology}, number = {6}, publisher = {Springer}, issn = {1432-0738}, doi = {10.1007/s00204-018-2212-1}, pages = {1953 -- 1967}, year = {2018}, abstract = {The pharmacokinetics of diclofenac were investigated following single oral doses of 10 mg/kg to chimeric liver humanized and murinized FRG and C57BL/6 mice. In addition, the metabolism and excretion were investigated in chimeric liver humanized and murinized FRG mice. Diclofenac reached maximum blood concentrations of 2.43 ± 0.9 µg/mL (n = 3) at 0.25 h post-dose with an AUCinf of 3.67 µg h/mL and an effective half-life of 0.86 h (n = 2). In the murinized animals, maximum blood concentrations were determined as 3.86 ± 2.31 µg/mL at 0.25 h post-dose with an AUCinf of 4.94 ± 2.93 µg h/mL and a half-life of 0.52 ± 0.03 h (n = 3). In C57BL/6J mice, mean peak blood concentrations of 2.31 ± 0.53 µg/mL were seen 0.25 h post-dose with a mean AUCinf of 2.10 ± 0.49 µg h/mL and a half-life of 0.51 ± 0.49 h (n = 3). Analysis of blood indicated only trace quantities of drug-related material in chimeric humanized and murinized FRG mice. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles in humanized mice were different to those of both murinized and wild-type animals, e.g., a higher proportion of the dose was detected in the form of acyl glucuronide metabolites and much reduced amounts as taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57BL/6J mice and humans revealed a greater, though not complete, match between chimeric humanized mice and humans, such that the liver humanized FRG model may represent a model for assessing the biotransformation of such compounds in humans.}, language = {en} } @article{HagemannLadeWarnieretal.1991, author = {Hagemann, Hans-J{\"u}rgen and Lade, H. and Warnier, J. and Wiechert, D. U.}, title = {The performance of Depressed-Cladding Single-Mode Fibres with Different b/a Ratios. Hagemann, H.-J.; Lade, H.; Warnier, J.; Wiechert, D. U.}, series = {Journal of Lightwave Technology (J-LT) / Institute of Electrical and Electronics Engineers (IEEE). 9 (1991), H. 6}, journal = {Journal of Lightwave Technology (J-LT) / Institute of Electrical and Electronics Engineers (IEEE). 9 (1991), H. 6}, isbn = {0733-8724}, pages = {689 -- 694}, year = {1991}, language = {en} } @article{KotterRiekertWeyland1985, author = {Kotter, Michael and Riekert, Lothar and Weyland, Friedrich}, title = {The performance of base metal oxides on ceramic carriers as catalysts for air pollution control}, series = {International chemical engineering. 25 (1985), H. 3}, journal = {International chemical engineering. 25 (1985), H. 3}, isbn = {0020-6318}, pages = {418 -- 427}, year = {1985}, language = {en} } @article{MuellerVeggianBeuscherGonoetal.1977, author = {M{\"u}ller-Veggian, Mattea and Beuscher, H. and Gono, Y. and Lieder, R. M.}, title = {The orange-ß-spectrometer at the external beam of the cyclotron}, series = {Annual report 1976 / Institut f{\"u}r Kernphysik Kernforschungsanlage J{\"u}lich / Ed. board: A. F{\"a}ßler ...}, journal = {Annual report 1976 / Institut f{\"u}r Kernphysik Kernforschungsanlage J{\"u}lich / Ed. board: A. F{\"a}ßler ...}, publisher = {Kernforschungsanlage}, address = {J{\"u}lich}, pages = {124}, year = {1977}, language = {en} } @article{MuellerVeggianTurekColautti2005, author = {M{\"u}ller-Veggian, Mattea and Turek, M. and Colautti, P.}, title = {The new Twin mini TEPC: an advanced tool for Boron Neutron Capture Therapy}, series = {Annual report / Istituto Nazionale di Fisica Nucleare, LNL, Laboratori Nazionali di Legnaro. 2004 (2005)}, journal = {Annual report / Istituto Nazionale di Fisica Nucleare, LNL, Laboratori Nazionali di Legnaro. 2004 (2005)}, isbn = {88-7337-008-X}, pages = {244 -- 245}, year = {2005}, language = {en} } @article{SchererHessbergerGaeggeleretal.1989, author = {Scherer, Ulrich W. and Heßberger, F. P. and G{\"a}ggeler, H. W. and Armbruster, P.}, title = {The New Nuclide 225U / F.P. Heßberger, H. G{\"a}ggeler, P. Armbruster, W. Br{\"u}chle, H. Folger, S. Hofmann, D. Jost, J.V. Kratz, M.E. Leino, G. M{\"u}nzenberg, V. Ninov, M. Sch{\"a}del, U.W. Scherer, K. S{\"u}mmerer, A. T{\"u}rler, D. Ackerman}, series = {Zeitschrift f{\"u}r Physik A Hadrons and Nuclei. 333 (1989), H. 1}, journal = {Zeitschrift f{\"u}r Physik A Hadrons and Nuclei. 333 (1989), H. 1}, isbn = {0939-7922}, pages = {111 -- 112}, year = {1989}, language = {en} } @article{MuellerVeggianMoroFerretietal.2006, author = {M{\"u}ller-Veggian, Mattea and Moro, D. and Ferreti, A. and Colautti, P.}, title = {The new articulated twin mini TEPC}, series = {Annual Report 2006 / Istituto Nazionale di Fisica Nucleare / Laboratori Nazionali }, journal = {Annual Report 2006 / Istituto Nazionale di Fisica Nucleare / Laboratori Nazionali }, address = {Legnaro}, pages = {273}, year = {2006}, language = {en} } @article{TaylorSchmitzZiemonsetal.2000, author = {Taylor, J. G. and Schmitz, N. and Ziemons, Karl and Grosse-Ruyken, M.-L. and Gruber, O. and M{\"u}ller-G{\"a}rtner, H.-W. and Shah, N. J.}, title = {The network of brain areas involved in the motion aftereffect}, series = {Neuroimage}, volume = {11}, journal = {Neuroimage}, number = {4}, isbn = {1053-8119}, pages = {257 -- 270}, year = {2000}, abstract = {A network of brain areas is expected to be involved in supporting the motion aftereffect. The most active components of this network were determined by means of an fMRI study of nine subjects exposed to a visual stimulus of moving bars producing the effect. Across the subjects, common areas were identified during various stages of the effect, as well as networks of areas specific to a single stage. In addition to the well-known motion-sensitive area MT the prefrontal brain areas BA44 and 47 and the cingulate gyrus, as well as posterior sites such as BA37 and BA40, were important components during the period of the motion aftereffect experience. They appear to be involved in control circuitry for selecting which of a number of processing styles is appropriate. The experimental fMRI results of the activation levels and their time courses for the various areas are explored. Correlation analysis shows that there are effectively two separate and weakly coupled networks involved in the total process. Implications of the results for awareness of the effect itself are briefly considered in the final discussion.}, language = {en} } @article{HautzelTaylorKrauseetal.2001, author = {Hautzel, H. and Taylor, J. G. and Krause, B. J. and Schmitz, N. and Tellmann, L. and Ziemons, Karl and Shah, N. J. and Herzog, H. and M{\"u}ller-G{\"a}rtner, H.-W.}, title = {The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies}, series = {Brain Research}, volume = {892}, journal = {Brain Research}, number = {2}, isbn = {0006-8993}, pages = {281 -- 292}, year = {2001}, abstract = {The motion aftereffect is a perceptual phenomenon which has been extensively investigated both psychologically and physiologically. Neuroimaging techniques have recently demonstrated that area V5/MT is activated during the perception of this illusion. The aim of this study was to test the hypothesis if a more broadly distributed network of brain regions subserves the motion aftereffect. To identify the neuronal structures involved in the perception of the motion aftereffect, regional cerebral blood flow (rCBF) measurements with positron emission tomography were performed in six normal volunteers. Data were analysed using SPM96. The motion-sensitive visual areas including area V5/MT were activated in both hemispheres. Additionally, the lateral parietal cortex bilaterally, the right dorsolateral prefrontal cortex, the anterior cingulate cortex and the left cerebellum showed significant increases in rCBF values during the experience of the waterfall illusion. In a further reference condition with identical attentional demand but no perception of a motion aftereffect elevated rCBF were found in these regions as well. In conclusion, our findings support the notion that the perceptual illusion of motion arises exclusively in the motion-sensitive visual area V5/MT. In addition, a more widespread network of brain regions including the prefrontal and parietal cortex is activated during the waterfall illusion which represents a non-motion aftereffect-specific subset of brain areas but is involved in more basic attentional processing and cognition.}, language = {de} }