@article{BankOrzadaSmitsetal.2015, author = {Bank, Bart L. van de and Orzada, Stephan and Smits, Frits and Lagemaat, Miriam W. and Rodgers, Christopher T. and Bitz, Andreas and Scheenen, Tom W. J.}, title = {Optimized (31) P MRS in the human brain at 7 T with a dedicated RF coil setup}, series = {NMR in Biomedicine}, volume = {28}, journal = {NMR in Biomedicine}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1099-1492}, doi = {10.1002/nbm.3422}, pages = {1570 -- 1578}, year = {2015}, language = {en} } @article{OrzadaBitzSchaeferetal.2011, author = {Orzada, Stephan and Bitz, Andreas and Sch{\"a}fer, Lena C. and Ladd, Susanne C. and Ladd, Mark E. and Maderwald, Stefan}, title = {Open design eight-channel transmit/receive coil for high-resolution and real-time ankle imaging at 7 T}, series = {Medical Physics}, volume = {38}, journal = {Medical Physics}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2473-4209}, doi = {10.1118/1.3553399}, pages = {1162 -- 1167}, year = {2011}, abstract = {Purpose: At 1.5 T, real-time MRI of joint movement has been shown to be feasible. However, 7 T, provides higher SNR and thus an improved potential for parallel imaging acceleration. The purpose of this work was to build an open, U-shaped eight-channel transmit/receive microstrip coil for 7 T MRI to enable high-resolution and real-time imaging of the moving ankle joint. Methods: A U-shaped eight-channel transmit/receive array for the human ankle was built.urn:x-wiley:00942405:mp3399:equation:mp3399-math-0001-parameters and urn:x-wiley:00942405:mp3399:equation:mp3399-math-0002-factor were measured. SAR calculations of different ankle postures were performed to ensure patient safety. Inhomogeneities in the transmit field consequent to the open design were compensated for by the use of static RF shimming. High-resolution and real-time imaging was performed in human volunteers. Results: The presented array showed good performance with regard to patient comfort and image quality. High acceleration factors of up to 4 are feasible without visible acceleration artifacts. Reasonable image homogeneity was achieved with RF shimming. Conclusions: Open, noncylindrical designs for transmit/receive coils are practical at 7 T and real-time imaging of the moving joint is feasible with the presented coil design.}, language = {en} } @article{BitzZhouElQuardietal.2009, author = {Bitz, Andreas and Zhou, Yi and El Quardi, Abdessamad and Streckert, Joachim}, title = {Occupational Exposure at Mobile Communication Base Station Antenna Sites}, series = {Frequenz}, volume = {63}, journal = {Frequenz}, number = {7-8}, issn = {2191-6349}, doi = {10.1515/FREQ.2009.63.7-8.123}, pages = {123 -- 128}, year = {2009}, language = {en} } @article{SommerStreckertBitzetal.2004, author = {Sommer, Angela M. and Streckert, Joachim and Bitz, Andreas and Hansen, Volkert W. and Lerchl, Alexander}, title = {No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice}, series = {BMC Cancer}, volume = {77}, journal = {BMC Cancer}, number = {4}, doi = {10.1186/1471-2407-4-77}, year = {2004}, language = {en} } @article{ElQuardiStreckertBitzetal.2011, author = {El Quardi, A. and Streckert, J. and Bitz, Andreas and M{\"u}nkner, S. and Engel, J. and Hansen, V.}, title = {New fin-line devices for radiofrequency exposure of small biological samples in vitro allowing whole-cell patch clamp recordings}, series = {Bioelectromagnetics}, volume = {32}, journal = {Bioelectromagnetics}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-186X}, doi = {10.1002/bem.20621}, pages = {102 -- 112}, year = {2011}, abstract = {The development and analysis of three waveguides for the exposure of small biological in vitro samples to mobile communication signals at 900 MHz (GSM, Global System for Mobile Communications), 1.8 GHz (GSM), and 2 GHz (UMTS, Universal Mobile Telecommunications System) is presented. The waveguides were based on a fin-line concept and the chamber containing the samples bathed in extracellular solution was placed onto two fins with a slot in between, where the exposure field concentrates. Measures were taken to allow for patch clamp recordings during radiofrequency (RF) exposure. The necessary power for the achievement of the maximum desired specific absorption rate (SAR) of 20 W/kg (average over the mass of the solution) was approximately Pin = 50 mW, Pin = 19 mW, and Pin = 18 mW for the 900 MHz, 1800 MHz, and 2 GHz devices, respectively. At 20 W/kg, a slight RF-induced temperature elevation in the solution of no more than 0.3 °C was detected, while no thermal offsets due to the electromagnetic exposure could be detected at the lower SAR settings (2, 0.2, and 0.02 W/kg). A deviation of 10\% from the intended solution volume yielded a calculated SAR deviation of 8\% from the desired value. A maximum ±10\% variation in the local SAR could occur when the position of the patch clamp electrode was altered within the area where the cells to be investigated were located.}, language = {en} } @article{KraffWredeSchoembergetal.2013, author = {Kraff, Oliver and Wrede, Karsten H. and Schoemberg, Tobias and Dammann, Philipp and Noureddine, Yacine and Orzada, Stephan and Ladd, Mark E. and Bitz, Andreas}, title = {MR safety assessment of potential RF heating from cranial fixation plates at 7 T}, series = {Medical Physics}, volume = {40}, journal = {Medical Physics}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {2473-4209}, doi = {10.1118/1.4795347}, pages = {042302-1 -- 042302-10}, year = {2013}, language = {en} } @article{OrzadaJohstMaderwaldetal.2013, author = {Orzada, Stephan and Johst, S{\"o}ren and Maderwald, Stefan and Bitz, Andreas and Solbach, Klaus and Ladd, Mark E.}, title = {Mitigation of B1(+) inhomogeneity on single-channel transmit systems with TIAMO}, series = {Magnetic Resonance in Medicine}, volume = {70}, journal = {Magnetic Resonance in Medicine}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24453}, pages = {290 -- 294}, year = {2013}, language = {en} } @article{SommerBitzStreckertetal.2007, author = {Sommer, Angela M. and Bitz, Andreas and Streckert, Joachim and Hansen, Volkert W. and Lerchl, Alexander}, title = {Lymphoma development in mice chronically exposed to UMTS-modulated radiofrequency electromagnetic fields}, series = {Radiation Research}, volume = {168}, journal = {Radiation Research}, number = {1}, issn = {1938-5404}, doi = {10.1667/RR0857.1}, pages = {72 -- 80}, year = {2007}, language = {en} } @article{OrzadaFiedlerBitzetal.2020, author = {Orzada, Stephan and Fiedler, Thomas M. and Bitz, Andreas and Ladd, Mark E. and Quick, Harald H.}, title = {Local SAR compression with overestimation control to reduce maximum relative SAR overestimation and improve multi-channel RF array performance}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {34 (2021)}, publisher = {Springer}, address = {Heidelberg}, isbn = {1352-8661}, doi = {10.1007/s10334-020-00890-0}, pages = {153 -- 164}, year = {2020}, abstract = {Objective In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance. Method Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression. Result Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20\% at the cost of a higher absolute overestimation at high actual local SAR values. Conclusion The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission.}, language = {en} } @article{KobusBitzUdenetal.2012, author = {Kobus, Thiele and Bitz, Andreas and Uden, Mark J. van and Lagemaat, Miram W. and Rothgang, Eva and Orzada, Stephan and Heerschap, Arend and Scheenen, Tom W. J.}, title = {In vivo 31P MR spectroscopic imaging of the human prostate at 7 T: safety and feasibility}, series = {Magnetic Resonance in Medicine}, volume = {68}, journal = {Magnetic Resonance in Medicine}, number = {6}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.24175}, pages = {1683 -- 1695}, year = {2012}, abstract = {31P MR spectroscopic imaging of the human prostate provides information about phosphorylated metabolites that could be used for prostate cancer characterization. The sensitivity of a magnetic field strength of 7 T might enable 3D 31P MR spectroscopic imaging with relevant spatial resolution in a clinically acceptable measurement time. To this end, a 31P endorectal coil was developed and combined with an eight-channel 1H body-array coil to relate metabolic information to anatomical location. An extensive safety validation was performed to evaluate the specific absorption rate, the radiofrequency field distribution, and the temperature distribution of both coils. This validation consisted of detailed Finite Integration Technique simulations, confirmed by MR thermometry and Burn:x-wiley:07403194:media:MRM24175:tex2gif-stack-1 measurements in a phantom and in vivo temperature measurements. The safety studies demonstrated that the presence of the 31P endorectal coil had no influence on the specific absorption rate levels and temperature distribution of the external eight-channel 1H array coil. To stay within a 10 g averaged local specific absorption rate of 10 W/kg, a maximum time-averaged input power of 33 W for the 1H array coil was allowed. For transmitting with the 31P endorectal coil, our safety limit of less than 1°C temperature increase in vivo during a 15-min MR spectroscopic imaging experiment was reached at a time-averaged input power of 1.9 W. With this power setting, a second in vivo measurement was performed on a healthy volunteer. Using adiabatic excitation, 3D 31P MR spectroscopic imaging produced spectra from the entire prostate in 18 min with a spatial resolution of 4 cm3. The spectral resolution enabled the separate detection of phosphocholine, phosphoethanolamine, inorganic phosphate, and other metabolites that could play an important role in the characterization of prostate cancer.}, language = {en} } @article{NoureddineKraffLaddetal.2017, author = {Noureddine, Yacine and Kraff, Oliver and Ladd, Mark E. and Wrede, Karsten H. and Chen, Bixia and Quick, Harald H. and Schaefers, Gregor and Bitz, Andreas}, title = {In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.26650}, pages = {14 Seiten}, year = {2017}, language = {en} } @article{WissenBogdanskiScheeretal.2005, author = {Wissen, M. and Bogdanski, N. and Scheer, H.-C. and Bitz, Andreas and Ahrens, G. and Gruetzner, G.}, title = {Implication of the light polarisation for UV curing of pre-patterned resists}, series = {Microelectronic Engineering}, volume = {78-79}, journal = {Microelectronic Engineering}, issn = {0167-9317}, doi = {10.1016/j.mee.2004.12.099}, pages = {659 -- 664}, year = {2005}, language = {en} } @article{VosLagemaatBarentszetal.2014, author = {Vos, E. K. and Lagemaat, M. W. and Barentsz, J. O. and F{\"u}tterer, J. J. and Zamecnik, P. and Roozen, H. and Orzada, S. and Bitz, Andreas and Maas, M. C. and Scheenen, T. W. J.}, title = {Image quality and cancer visibility of T2-weighted Magnetic Resonance Imaging of the prostate at 7 Tesla}, series = {European Radiology}, volume = {24}, journal = {European Radiology}, number = {8}, publisher = {Springer}, address = {Cham}, issn = {1432-1084}, doi = {10.1007/s00330-014-3234-6}, pages = {1950 -- 1958}, year = {2014}, abstract = {Objectives To assess the image quality of T2-weighted (T2w) magnetic resonance imaging of the prostate and the visibility of prostate cancer at 7 Tesla (T). Materials \& methods Seventeen prostate cancer patients underwent T2w imaging at 7T with only an external transmit/receive array coil. Three radiologists independently scored images for image quality, visibility of anatomical structures, and presence of artefacts. Krippendorff's alpha and weighted kappa statistics were used to assess inter-observer agreement. Visibility of prostate cancer lesions was assessed by directly linking the T2w images to the confirmed location of prostate cancer on histopathology. Results T2w imaging at 7T was achievable with 'satisfactory' (3/5) to 'good' (4/5) quality. Visibility of anatomical structures was predominantly scored as 'satisfactory' (3/5) and 'good' (4/5). If artefacts were present, they were mostly motion artefacts and, to a lesser extent, aliasing artefacts and noise. Krippendorff's analysis revealed an α = 0.44 between three readers for the overall image quality scores. Clinically significant cancer lesions in both peripheral zone and transition zone were visible at 7T. Conclusion T2w imaging with satisfactory to good quality can be routinely acquired, and cancer lesions were visible in patients with prostate cancer at 7T using only an external transmit/receive body array coil.}, language = {en} } @article{NdoumbeMbonjoMbonjoStreckertBitzetal.2004, author = {Ndoumb{\`e} Mbonjo Mbonjo, H. and Streckert, J. and Bitz, Andreas and Hansen, V. and Glasmachers, A. and Gencol, S. and Rozic, D.}, title = {Generic UMTS test signal for RF bioelectromagnetic studies}, series = {Bioelectromagnetics}, volume = {25}, journal = {Bioelectromagnetics}, number = {6}, issn = {1521-186X}, doi = {10.1002/bem.20007}, pages = {415 -- 425}, year = {2004}, language = {en} } @inproceedings{BitzStreckertHansenetal.2000, author = {Bitz, Andreas and Streckert, J.R. and Hansen, V.W. and Lerchl, A.}, title = {Freely moving or restrained animals in bioelec-tromagnetic experiments - pros and cons}, series = {AP 2000 : Millennium Conference on Antennas \& Propagation, Davos, Switzerland, 9 - 14 April 2000}, booktitle = {AP 2000 : Millennium Conference on Antennas \& Propagation, Davos, Switzerland, 9 - 14 April 2000}, number = {Band 1}, editor = {Danesy, Dorothea}, publisher = {ESA Publications Division, ESTEC}, address = {Noordwijk}, pages = {489}, year = {2000}, language = {en} } @article{UmutluMaderwaldKinneretal.2013, author = {Umutlu, L. and Maderwald, S. and Kinner, S. and Kraff, O. and Bitz, Andreas and Orzada, S. and Johst, S. and Wrede, K. and Forsting, M. and Ladd, M. E. and Lauenstein, T. C. and Quick, H. H.}, title = {First-pass contrast-enhanced renal MRA at 7 Tesla: initial results}, series = {European Radiology}, volume = {23}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, doi = {10.1007/s00330-012-2666-0}, pages = {1059 -- 1066}, year = {2013}, language = {en} } @article{MaasVosLagemaatetal.2014, author = {Maas, Marnix C. and Vos, Eline K. and Lagemaat, Miriam W. and Bitz, Andreas and Orzada, Stephan and Kobus, Thiele and Kraff, Oliver and Maderwald, Stefan and Ladd, Mark E. and Scheenen, Tom W. J.}, title = {Feasibility of T₂-weighted turbo spin echo imaging of the human prostate at 7 tesla}, series = {Magnetic Resonance in Medicine}, volume = {71}, journal = {Magnetic Resonance in Medicine}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24818}, pages = {1711 -- 1719}, year = {2014}, abstract = {Purpose To demonstrate that high quality T₂-weighted (T2w) turbo spin-echo (TSE) imaging of the complete prostate can be achieved routinely and within safety limits at 7 T, using an external transceive body array coil only. Methods Nine healthy volunteers and 12 prostate cancer patients were scanned on a 7 T whole-body system. Preparation consisted of B₀ and radiofrequency shimming and localized flip angle calibration. T₁ and T₂ relaxation times were measured and used to define the T2w-TSE protocol. T2w imaging was performed using a TSE sequence (pulse repetition time/echo time 3000-3640/71 ms) with prolonged excitation and refocusing pulses to reduce specific absorption rate. Results High quality T2w TSE imaging was performed in less than 2 min in all subjects. Tumors of patients with gold-standard tumor localization (MR-guided biopsy or prostatectomy) were well visualized on 7 T imaging (n = 3). The number of consecutive slices achievable within a 10-g averaged specific absorption rate limit of 10 W/kg was ≥28 in all subjects, sufficient for full prostate coverage with 3-mm slices in at least one direction. Conclusion High quality T2w TSE prostate imaging can be performed routinely and within specific absorption rate limits at 7 T with an external transceive body array.}, language = {en} } @article{SchlamannVoigtMaderwaldetal.2010, author = {Schlamann, Marc and Voigt, Melanie A. and Maderwald, Stefan and Bitz, Andreas and Kraff, Oliver and Ladd, Susanne C. and Ladd, Mark E. and Forsting, Michael and Wilhelm, Hans}, title = {Exposure to high-field MRI does not affect cognitive function}, series = {Journal of Magnetic Resonance Imaging}, volume = {31}, journal = {Journal of Magnetic Resonance Imaging}, number = {5}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.22065}, pages = {1061 -- 1066}, year = {2010}, abstract = {Purpose To assess potential cognitive deficits under the influence of static magnetic fields at various field strengths some studies already exist. These studies were not focused on attention as the most vulnerable cognitive function. Additionally, mostly no magnetic resonance imaging (MRI) sequences were performed. Materials and Methods In all, 25 right-handed men were enrolled in this study. All subjects underwent one MRI examination of 63 minutes at 1.5 T and one at 7 T within an interval of 10 to 30 days. The order of the examinations was randomized. Subjects were referred to six standardized neuropsychological tests strictly focused on attention immediately before and after each MRI examination. Differences in neuropsychological variables between the timepoints before and after each MRI examination were assessed and P-values were calculated Results Only six subtests revealed significant differences between pre- and post-MRI. In these tests the subjects achieved better results in post-MRI testing than in pre-MRI testing (P = 0.013-0.032). The other tests revealed no significant results. Conclusion The improvement in post-MRI testing is only explicable as a result of learning effects. MRI examinations, even in ultrahigh-field scanners, do not seem to have any persisting influence on the attention networks of human cognition immediately after exposure.}, language = {en} } @article{ReinhardtBitzElOuardietal.2007, author = {Reinhardt, T. and Bitz, Andreas and El Ouardi, A. and Streckert, J. and Sommer, A. and Lerchl, A. and Hansen, V.}, title = {Exposure set-ups for in vivo experiments using radial waveguides}, series = {Radiation Protection Dosimetry}, volume = {124}, journal = {Radiation Protection Dosimetry}, number = {1}, issn = {1742-3406}, doi = {10.1093/rpd/ncm370}, pages = {21 -- 26}, year = {2007}, language = {en} } @inproceedings{BitzKlompLadd2009, author = {Bitz, Andreas and Klomp, D.W. and Ladd, M.E.}, title = {Experimental and numerical determination of SAR and temperature distribution of a human endorectal coil for MR imaging of the prostate at 7T (903.)}, series = {16th annual ISMRM scientific meeting and exhibition 2008 : Toronto, Ontario, Canada, 3 - 9 May 2008}, booktitle = {16th annual ISMRM scientific meeting and exhibition 2008 : Toronto, Ontario, Canada, 3 - 9 May 2008}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-61567-196-0}, year = {2009}, language = {en} }