@article{AlbannaKotliarLuekeetal.2018, author = {Albanna, Walid and Kotliar, Konstantin and L{\"u}ke, Jan Niklas and Alpdogan, Serdar and Conzen, Catharina and Lindauer, Ute and Clusmann, Hans and Hescheler, J{\"u}rgen and Vilser, Walthard and Schneider, Toni and Schubert, Gerrit Alexander}, title = {Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis}, series = {Plos one}, volume = {13}, journal = {Plos one}, number = {10}, publisher = {PLOS}, address = {San Francisco}, doi = {10.1371/journal.pone.0204689}, pages = {e0204689}, year = {2018}, abstract = {Background Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. Methods A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. Results A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). Conclusions To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals.}, language = {en} } @article{AlbannaConzenWeissetal.2021, author = {Albanna, Walid and Conzen, Catharina and Weiss, Miriam and Seyfried, Katharina and Kotliar, Konstantin and Schmidt, Tobias Philip and Kuerten, David and Hescheler, J{\"u}rgen and Bruecken, Anne and Schmidt-Trucks{\"a}ss, Arno and Neumaier, Felix and Wiesmann, Martin and Clusmann, Hans and Schubert, Gerrit Alexander}, title = {Non-invasive assessment of neurovascular coupling after aneurysmal subarachnoid hemorrhage: a prospective observational trial using retinal vessel analysis}, series = {Frontiers in Neurology}, volume = {12}, journal = {Frontiers in Neurology}, number = {12}, issn = {1664-2295}, doi = {10.3389/fneur.2021.690183}, pages = {1 -- 15}, year = {2021}, abstract = {Delayed cerebral ischemia (DCI) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH) and can lead to infarction and poor clinical outcome. The underlying mechanisms are still incompletely understood, but animal models indicate that vasoactive metabolites and inflammatory cytokines produced within the subarachnoid space may progressively impair and partially invert neurovascular coupling (NVC) in the brain. Because cerebral and retinal microvasculature are governed by comparable regulatory mechanisms and may be connected by perivascular pathways, retinal vascular changes are increasingly recognized as a potential surrogate for altered NVC in the brain. Here, we used non-invasive retinal vessel analysis (RVA) to assess microvascular function in aSAH patients at different times after the ictus.}, language = {en} } @article{BaumannSchwarzKotliaretal.2009, author = {Baumann, Marcus and Schwarz, Sonja and Kotliar, Konstantin and Eynatten, Maximilian von and Trucksaess, Arno and Burckhardt, Klaus and Lutz, Jens and Heemann, Uwe and Lanzl, Ines}, title = {Non-diabetic chronic kidney disease influences retinal microvasculature}, series = {Kidney and Blood Pressure Research}, volume = {32}, journal = {Kidney and Blood Pressure Research}, number = {6}, publisher = {-}, isbn = {1423-0143}, pages = {428 -- 433}, year = {2009}, language = {en} } @article{BurkhardtSchwarzPanetal.2009, author = {Burkhardt, Klaus and Schwarz, Sonja and Pan, Chengrui and Stelter, Felix and Kotliar, Konstantin and Eynatten, Maxilian von and Sollinger, Daniel and Lanzl, Ines and Heemann, Uwe and Baumann, Marcus}, title = {Myeloid-related protein 8/14 complex describes microcirculatory alterations in patients with type 2 diabetes and nephropathy}, series = {Cardiovascular Diabetology}, volume = {8}, journal = {Cardiovascular Diabetology}, number = {10}, publisher = {-}, isbn = {1475-2840}, pages = {1 -- 8}, year = {2009}, language = {en} } @article{KotliarSvetlovaMakarovetal.2003, author = {Kotliar, Konstantin and Svetlova, O. V. and Makarov, F. N. and Zaseeva, M. V.}, title = {Morfologicheskie i funktsional'nye osobennosti resnichnogo poiaska khrustalika kak kliuchevogo ispolnitel'nogo zvena v mekhanizme akkommodatsii glaza cheloveka = Morpho-functional characteristics of lens ciliary body as a key mechanism of accommodation in}, series = {Morfologiia (Saint Petersburg, Russia). 123 (2003), H. 3}, journal = {Morfologiia (Saint Petersburg, Russia). 123 (2003), H. 3}, publisher = {-}, isbn = {1026-3543}, pages = {7 -- 16}, year = {2003}, language = {en} } @article{FuestKotliarWalteretal.2014, author = {Fuest, Matthias and Kotliar, Konstantin and Walter, Peter and Plange, Niklas}, title = {Monitoring intraocular pressure changes after intravitreal Ranibizumab injection using rebound tonometry}, series = {Ophthalmic and physiological optics}, volume = {34}, journal = {Ophthalmic and physiological optics}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1475-1313 (E-Journal); 0275-5408 (Print)}, doi = {10.1111/opo.12134}, pages = {438 -- 444}, year = {2014}, language = {en} } @article{AlbannaLuekeSchubertetal.2019, author = {Albanna, Walid and L{\"u}ke, Jan Niklas and Schubert, Gerrit Alexander and Dibu{\´e}-Adjei, Maxine and Kotliar, Konstantin and Hescheler, J{\"u}rgen and Clusmann, Hans and Steiger, Hans-Jakob and H{\"a}nggi, Daniel and Kamp, Marcel A. and Schneider, Toni and Neumaier, Felix}, title = {Modulation of Ca v 2.3 channels by unconjugated bilirubin (UCB) - Candidate mechanism for UCB-induced neuromodulation and neurotoxicity}, series = {Molecular and Cellular Neuroscience}, volume = {96}, journal = {Molecular and Cellular Neuroscience}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1044-7431}, doi = {10.1016/j.mcn.2019.03.003}, pages = {35 -- 46}, year = {2019}, language = {en} } @article{KotliarBauerZamuraev2006, author = {Kotliar, Konstantin and Bauer, S. M. and Zamuraev, L. A.}, title = {Model of the transversely isotropic spherical layer for estimation of intraocular pressure changes after intravitreal injections / Bauer, S. M. ; Zamuraev, L. A. ; Kotliar, K. E.}, series = {Rossiiskii zhurnal biomekhaniki = Russian Journal of biomechanics. 10 (2006), H. 2}, journal = {Rossiiskii zhurnal biomekhaniki = Russian Journal of biomechanics. 10 (2006), H. 2}, publisher = {-}, isbn = {1812-5123}, pages = {41 -- 47}, year = {2006}, language = {en} } @article{KotliarNagelVilseretal.2010, author = {Kotliar, Konstantin and Nagel, Edgar and Vilser, Walthard and Seidova, Seid-Fatima and Lanzl, Ines}, title = {Microstructural alterations of retinal arterial blood column along the vessel axis in systemic hypertension}, series = {Investigative Ophthalmology \& Visual Science, IOVS}, volume = {51}, journal = {Investigative Ophthalmology \& Visual Science, IOVS}, number = {4}, publisher = {ARVO}, address = {Rockville, Md.}, issn = {0146-0404}, doi = {10.1167/iovs.09-3649}, pages = {2165 -- 2172}, year = {2010}, abstract = {Purpose: Image analysis by the retinal vessel analyzer (RVA) observes retinal vessels in their dynamic state online noninvasively along a chosen vessel segment. It has been found that high-frequency diameter changes in the retinal artery blood column along the vessel increase significantly in anamnestically healthy volunteers with increasing age and in patients with glaucoma during vascular dilation. This study was undertaken to investigate whether longitudinal sections of the retinal artery blood column are altered in systemic hypertension. Methods: Retinal arteries of 15 untreated patients with essential arterial hypertension (age, 50.9 ± 11.9 years) and of 15 age-matched anamnestically healthy volunteers were examined by RVA. After baseline assessment, a monochromatic luminance flicker (530-600 nm; 12.5 Hz; 20 s) was applied to evoke retinal vasodilation. Differences in amplitude and frequency of spatial artery blood column diameter change along segments (longitudinal arterial profiles) of 1 mm in length were measured and analyzed using Fourier transformation. Results: In the control group, average reduced power spectra (ARPS) of longitudinal arterial profiles did not differ when arteries changed from constriction to dilation. In the systemic hypertension group, ARPS during constriction, baseline, and restoration were identical and differed from ARPS during dilation (P < 0.05). Longitudinal arterial profiles in both groups showed significant dissimilitude at baseline and restoration (P < 0.05). Conclusions: The retinal artery blood column demonstrates microstructural alterations in systemic hypertension and is less irregular along the vessel axis during vessel dilation. These microstructural changes may be an indication of alterations in vessel wall rigidity, vascular endothelial function, and smooth muscle cells in this disease, leading to impaired perfusion and regulation.}, language = {en} } @article{MartinGonzalezKotliarRiosMartinezetal.2014, author = {Martin-Gonzalez, Anabel and Kotliar, Konstantin and Rios-Martinez, Jorge and Lanzl, Ines and Navab, Nassir}, title = {Mediated-reality magnification for macular degeneration rehabilitation}, series = {Journal of Modern Optics}, volume = {61}, journal = {Journal of Modern Optics}, number = {17}, publisher = {Taylor \& Francis}, address = {London}, issn = {1362-3044}, doi = {10.1080/09500340.2014.936110}, pages = {1400 -- 1408}, year = {2014}, language = {en} } @article{KotliarMaierBaueretal.2008, author = {Kotliar, Konstantin and Maier, Mathias and Bauer, Svetlana and Feucht, Nikolaus and Lohmann, Chris and Lanzl, Ines}, title = {Intravitreal injection of triamcinolone acetonide and intraocular pressure: author's reply}, series = {Acta Ophthalmologica}, volume = {86}, journal = {Acta Ophthalmologica}, number = {6}, publisher = {-}, isbn = {1755-3768}, pages = {692 -- 693}, year = {2008}, language = {en} } @article{KotliarLanzlMaieretal.2008, author = {Kotliar, Konstantin and Lanzl, Ines M. and Maier, Mathias and Feucht, Nikolaus}, title = {Intraocular pressure effects of pegaptanib (macugen) injections in patients with and without glaucoma / Lanzl, Ines M. ; Maier, Mathias ; Feucht, Nikolaus ; Lohmann, Chris P. ; Kotliar, Konstantin E.}, series = {American Journal of Ophthalmology . 145 (2008), H. 1}, journal = {American Journal of Ophthalmology . 145 (2008), H. 1}, publisher = {-}, isbn = {1879-1891}, pages = {185 -- 185}, year = {2008}, language = {en} } @article{WerfelGuenthnerHapfelmeieretal.2022, author = {Werfel, Stanislas and G{\"u}nthner, Roman and Hapfelmeier, Alexander and Hanssen, Henner and Kotliar, Konstantin and Heemann, Uwe and Schmaderer, Christoph}, title = {Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning}, series = {Cardiovascular Research}, volume = {118}, journal = {Cardiovascular Research}, number = {2}, editor = {Guzik, Tomasz J.}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0008-6363}, doi = {10.1093/cvr/cvab040}, pages = {612 -- 621}, year = {2022}, abstract = {Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations.}, language = {en} } @article{SeidovaKotliarFoergeretal.2009, author = {Seidova, Seid-Fatima and Kotliar, Konstantin and Foerger, Frauke and Klopfer, Matthias and Lanzl, Ines}, title = {Functional retinal changes in Gaucher disease}, series = {Documenta Ophthalmologica}, volume = {118}, journal = {Documenta Ophthalmologica}, number = {2}, publisher = {Springer}, address = {Berlin}, isbn = {1573-2622}, pages = {151 -- 154}, year = {2009}, language = {en} } @article{KotliarNagelVilseretal.2008, author = {Kotliar, Konstantin and Nagel, Edgar and Vilser, Walthard and Lanzl, Ines M.}, title = {Functional in vivo assessment of retinal artery microirregularities in glaucoma / Kotliar, Konstantin E. ; Nagel, Edgar ; Vilser, Walthard ; Lanzl, Ines M.}, series = {Acta Ophthalmologica. 86 (2008), H. 4}, journal = {Acta Ophthalmologica. 86 (2008), H. 4}, publisher = {-}, isbn = {1755-3768}, pages = {424 -- 433}, year = {2008}, language = {en} } @article{LapitanRogatkinPersheyevetal.2018, author = {Lapitan, Denis G. and Rogatkin, Dmitrii A. and Persheyev, Sydulla K. and Kotliar, Konstantin}, title = {False spectra formation in the differential two-channel scheme of the laser Doppler flowmeter}, series = {Biomedizinische Technik}, volume = {63}, journal = {Biomedizinische Technik}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0013-5585}, doi = {10.1515/bmt-2017-0060}, pages = {439 -- 444}, year = {2018}, abstract = {Noise in the differential two-channel scheme of a classic laser Doppler flowmetry (LDF) instrument was studied. Formation of false spectral components in the output signal due to beating of electrical signals in the differential amplifier was found out. The improved block-diagram of the flowmeter was developed allowing to reduce the noise.}, language = {en} } @article{HanssenNickelDrexeletal.2011, author = {Hanssen, H. and Nickel, T. and Drexel, V. and Hertel, G. and Emslander, I. and Sisic, Z. and Lorang, D. and Schuster, T. and Kotliar, Konstantin and Pressler, A. and Schmidt-Trucks{\"a}ss, A. and Weis, M. and Halle, M.}, title = {Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity}, series = {Atherosclerosis}, volume = {216}, journal = {Atherosclerosis}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0021-9150}, pages = {433 -- 439}, year = {2011}, language = {en} } @article{AlbannaLuekeSjapicetal.2017, author = {Albanna, Walid and Lueke, Jan Niklas and Sjapic, Volha and Kotliar, Konstantin and Hescheler, J{\"u}rgen and Clusmann, Hans and Sjapic, Sergej and Alpdogan, Serdan and Schneider, Toni and Schubert, Gerrit Alexander and Neumaier, Felix}, title = {Electroretinographic Assessment of Inner Retinal Signaling in the Isolated and Superfused Murine Retina}, series = {Current Eye Research}, journal = {Current Eye Research}, number = {Article in press}, publisher = {Taylor \& Francis}, address = {London}, issn = {1460-2202}, doi = {10.1080/02713683.2017.1339807}, pages = {1 -- 9}, year = {2017}, language = {en} } @article{KotliarMaierBaueretal.2007, author = {Kotliar, Konstantin and Maier, Mathias and Bauer, Svetlana and Feucht, Nikolaus}, title = {Effect of intravitreal injections and volume changes on intraocular pressure: clinical results and biomechanical model / Kotliar, Konstantin ; Maier, Mathias ; Bauer, Svetlana ; Feucht, Nikolaus ; Lohmann, Chris ; Lanzl, Ines}, series = {Acta Ophthalmologica Scandinavica. 85 (2007), H. 7}, journal = {Acta Ophthalmologica Scandinavica. 85 (2007), H. 7}, publisher = {-}, isbn = {1755-3768}, pages = {777 -- 781}, year = {2007}, language = {en} } @article{KotliarMueckeVilseretal.2008, author = {Kotliar, Konstantin and M{\"u}cke, Bruno and Vilser, Walthard and Schilling, Rudolf}, title = {Effect of aging on retinal artery blood column diameter measured along the vessel axis / Kotliar, Konstantin E. ; M{\"u}cke, Bruno ; Vilser, Walthard ; Schilling, Rudolf ; Lanzl, Ines M.}, series = {Investigative Ophthalmology \& Visual Science, IOVS. 49 (2008), H. 5}, journal = {Investigative Ophthalmology \& Visual Science, IOVS. 49 (2008), H. 5}, publisher = {-}, isbn = {0146-0404}, pages = {2094 -- 2102}, year = {2008}, language = {en} }