@inproceedings{DigelDachwaldArtmannetal.2009, author = {Digel, Ilya and Dachwald, Bernd and Artmann, Gerhard and Linder, Peter and Funke, O.}, title = {A concept of a probe for particle analysis and life detection in icy environments}, year = {2009}, abstract = {A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa's ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live.}, subject = {Sonde}, language = {en} } @inproceedings{RabnerShacham2006, author = {Rabner, Arthur and Shacham, Yosi}, title = {A concept for a sensitive micro total analysis system for high throughput fluorescence imaging}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1456}, year = {2006}, abstract = {This paper discusses possible methods for on-chip fluorescent imaging for integrated bio-sensors. The integration of optical and electro-optical accessories, according to suggested methods, can improve the performance of fluorescence imaging. It can boost the signal to background ratio by a few orders of magnitudes in comparison to conventional discrete setups. The methods that are present in this paper are oriented towards building reproducible arrays for high-throughput micro total analysis systems (µTAS). The first method relates to side illumination of the fluorescent material placed into microcompartments of the lab-on-chip. Its significance is in high utilization of excitation energy for low concentration of fluorescent material. The utilization of a transparent µLED chip, for the second method, allows the placement of the excitation light sources on the same optical axis with emission detector, such that the excitation and emission rays are directed controversly. The third method presents a spatial filtering of the excitation background.}, subject = {Biosensor}, language = {en} } @inproceedings{BhattaraiFrotscherSoraetal.2014, author = {Bhattarai, Aroj and Frotscher, Ralf and Sora, M.-C. and Staat, Manfred}, title = {A 3D finite element model of the female pelvic floor for the reconstruction of urinary incontinence}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @inproceedings{DuongJungFrotscheretal.2016, author = {Duong, Minh Tuan and Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {A 3D electromechanical FEM-based model for cardiac tissue}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} }