@article{HueningLeineweberJacobsetal.1999, author = {H{\"u}ning, Felix and Leineweber, A. and Jacobs, H. and Lueken, H.}, title = {ε-Fe3N: magnetic structure, magnetization and temperature dependent disorder of nitrogen / Leineweber, A. ; Jacobs, H. ; H{\"u}ning, F. ; Lueken, H. ; Schilder, H. ; Kockelmann, W.}, series = {Journal of Alloys and Compounds. 288 (1999), H. 1-2}, volume = {288}, journal = {Journal of Alloys and Compounds. 288 (1999), H. 1-2}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-4669}, pages = {79 -- 87}, year = {1999}, abstract = {ε-Fe3N has been investigated by time-of-flight neutron diffraction (temperature range 4.2-618 K) and SQUID magnetometry (2-700 K, B≤5 T). A ferromagnetic spin structure is observed with magnetic moments oriented perpendicular to the c-axis of the hexagonal nuclear structure. The magnetic saturation moment of iron is 2.2 μB at 4.2 K from neutron diffraction and 2.0 μB from magnetic measurements and decreases in a Brillouin-like manner on heating to TC=575 K. Above 450 K an increasing but reversible disorder of the nitrogen partial structure is observed.}, language = {en} } @inproceedings{HueningStuettgen2021, author = {H{\"u}ning, Felix and St{\"u}ttgen, Marcel}, title = {Work in Progress: Interdisciplinary projects in times of COVID-19 crisis - challenges, risks and chances}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, doi = {10.1109/EDUCON46332.2021.9454006}, pages = {1175 -- 1179}, year = {2021}, language = {en} } @article{HueningHeuermannWache2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef}, title = {Wireless CAN without WLAN or Bluetooth}, series = {CAN Newsletter}, journal = {CAN Newsletter}, number = {December 2018}, pages = {44 -- 46}, year = {2018}, abstract = {In two developed concepts, dual-mode radio enables CAN participants to be integrated wirelessly into a CAN network. Constructed from a few components, a protocol-free, real-time transmission and thus transparent integration into CAN is provided.}, language = {en} } @misc{WiegnerVolkerMainzetal.2022, author = {Wiegner, J. and Volker, H. and Mainz, F. and Backes, A. and L{\"o}ken, M. and H{\"u}ning, Felix}, title = {Wiegand-Effect-Powered Wireless IT Sensor Node}, year = {2022}, abstract = {With the growing interest in small distributed sensors for the "Internet of Things", more attention is being paid to energy harvesting techologies. Reducing or eliminating the need for external power sources or batteries make devices more self-sufficient, more reliable, and reduces maintenance requirements. The Wiegand effect is a proven technology for harvesting small amounts of electrical power from mechanical motion.}, language = {en} } @inproceedings{WiegnerVolkerMainzetal.2022, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and L{\"o}ken, Michael and H{\"u}ning, Felix}, title = {Wiegand-effect-powered wireless IoT sensor node}, series = {Sensoren und Messsysteme 2022}, booktitle = {Sensoren und Messsysteme 2022}, publisher = {VDE Verlag GmbH}, address = {Berlin}, isbn = {978-3-8007-5835-7}, pages = {255 -- 260}, year = {2022}, abstract = {In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.}, language = {en} } @article{Huening2012, author = {H{\"u}ning, Felix}, title = {Using Trench PowerMOSFETs in Linear Mode}, series = {Power Electronics Europe (2012)}, journal = {Power Electronics Europe (2012)}, publisher = {DFA Media}, address = {Tonbridge}, issn = {1748-3530}, pages = {27 -- 29}, year = {2012}, abstract = {If we think about applications for modern Power MOSFETs using trench technology, running them in linear mode may not be top of the priority list. Yet there are multiple uses for Trench Power MOSFETs in linear mode. In fact, even turning the device on and off in switching applications is a form of linear operation. Also, these components can be run in linear mode to protect the device against voltage surges. This article will illustrate the factors that need to be considered for linear operation and show how Trench Power MOSFETs are suited to it.}, language = {en} } @book{Huening2014, author = {H{\"u}ning, Felix}, title = {The fundamentals of electrical engineering for mechatronics}, publisher = {de Gruyter}, address = {Berlin}, isbn = {978-3-11-034991-7 (Druckausg.)}, pages = {IX, 208 S.}, year = {2014}, language = {en} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1405 -- 1409}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} } @article{HueningSpartaRedhammeretal.2001, author = {H{\"u}ning, Felix and Sparta, K. and Redhammer, G. J. and Roussel, P.}, title = {Structural Phase Transition in the 2D Spin Dimer Compound SrCu2(BO3)2 / Sparta, K. ; Redhammer, G. J. ; Roussel, P. ; Heger, G. ; Roth, G. ; Ionescu, A. Lemmens, P. ; Grove, M. ; G{\"u}ntherrodt, G. ; H{\"u}ning, F. ; Lueken, H. ; Kageyama, H. ; Onizuka, K ; Ueda}, series = {The European Physical Journal B - Condensed Matter and Complex Systems. 19 (2001), H. 4}, journal = {The European Physical Journal B - Condensed Matter and Complex Systems. 19 (2001), H. 4}, publisher = {-}, isbn = {1434-6036}, pages = {507 -- 516}, year = {2001}, language = {en} } @article{Huening2009, author = {H{\"u}ning, Felix}, title = {SMD packages for PowerMOSFETs in automotive applications - developments and trends}, series = {Automotive Designline Europe (2009)}, journal = {Automotive Designline Europe (2009)}, publisher = {-}, year = {2009}, language = {en} } @article{HueningHillgaertnerReke2019, author = {H{\"u}ning, Felix and Hillg{\"a}rtner, Michael and Reke, Michael}, title = {Rolling Labs - Teaching Vehicle Electronics from the Beginning}, series = {International Journal of Engineering Pedagogy (iJEP)}, volume = {9}, journal = {International Journal of Engineering Pedagogy (iJEP)}, number = {1}, issn = {2192-4880}, doi = {10.3991/ijep.v9i1.9241}, pages = {34 -- 49}, year = {2019}, language = {en} } @inproceedings{HueningWacheMagiera2021, author = {H{\"u}ning, Felix and Wache, Franz-Josef and Magiera, David}, title = {Redundant bus systems using dual-mode radio}, series = {Proceedings of Sixth International Congress on Information and Communication Technology}, booktitle = {Proceedings of Sixth International Congress on Information and Communication Technology}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-16-2379-0}, doi = {10.1007/978-981-16-2380-6_73}, pages = {835 -- 842}, year = {2021}, abstract = {Communication via serial bus systems, like CAN, plays an important role for all kinds of embedded electronic and mechatronic systems. To cope up with the requirements for functional safety of safety-critical applications, there is a need to enhance the safety features of the communication systems. One measure to achieve a more robust communication is to add redundant data transmission path to the applications. In general, the communication of real-time embedded systems like automotive applications is tethered, and the redundant data transmission lines are also tethered, increasing the size of the wiring harness and the weight of the system. A radio link is preferred as a redundant transmission line as it uses a complementary transmission medium compared to the wired solution and in addition reduces wiring harness size and weight. Standard wireless links like Wi-Fi or Bluetooth cannot meet the requirements for real-time capability with regard to bus communication. Using the new dual-mode radio enables a redundant transmission line meeting all requirements with regard to real-time capability, robustness and transparency for the data bus. In addition, it provides a complementary transmission medium with regard to commonly used tethered links. A CAN bus system is used to demonstrate the redundant data transfer via tethered and wireless CAN.}, language = {en} } @inproceedings{Huening2016, author = {H{\"u}ning, Felix}, title = {Power Semiconductors for the automotive 48V board net}, series = {PCIM Europe 2016 Conference Proceedings}, booktitle = {PCIM Europe 2016 Conference Proceedings}, publisher = {VDE Verl.}, address = {Berlin}, isbn = {978-3-8007-4186-1}, pages = {1963 -- 1969}, year = {2016}, language = {en} } @inproceedings{Huening2014, author = {H{\"u}ning, Felix}, title = {Power semiconductors : key components for HEV/EV}, series = {FISITA 2014 World Automotive Congress : 2 - 6 June, Maastricht, the Netherlands International Federation of Automotive Engineering Societies}, booktitle = {FISITA 2014 World Automotive Congress : 2 - 6 June, Maastricht, the Netherlands International Federation of Automotive Engineering Societies}, publisher = {KIVI}, address = {[s.l.]}, pages = {1 USB-Speicherstick}, year = {2014}, language = {en} } @article{HueningLeineweberJacobsetal.2001, author = {H{\"u}ning, Felix and Leineweber, A. and Jacobs, H. and Lueken, H.}, title = {Nitrogen Ordering and ferromagnetic properties of -Fe3N1+x (0.10  x  0.39) and -Fe3(N0.80C0.20)1.38 / Leineweber, A. ; Jacobs, H. ; H{\"u}ning, F. ; Lueken, H. ; Kockelmann, W.}, series = {Journal of Alloys and Compounds. 316 (2001), H. 1-2}, journal = {Journal of Alloys and Compounds. 316 (2001), H. 1-2}, publisher = {-}, isbn = {1873-4669}, pages = {21 -- 38}, year = {2001}, language = {en} } @incollection{RebelHueningScholletal.2015, author = {Rebel, S{\"o}ren and H{\"u}ning, Felix and Scholl, Ingrid and Ferrein, Alexander}, title = {MQOne: Low-cost design for a rugged-terrain robot platform}, series = {Intelligent robotics and applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II (Lecture notes in computer science : vol. 9245)}, booktitle = {Intelligent robotics and applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II (Lecture notes in computer science : vol. 9245)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-22875-4 (print) ; 978-3-319-22876-1 (E-Book)}, doi = {10.1007/978-3-319-22876-1_19}, pages = {209 -- 221}, year = {2015}, abstract = {Rugged terrain robot designs are important for field robotics missions. A number of commercial platforms are available, however, at an impressive price. In this paper, we describe the hardware and software component of a low-cost wheeled rugged-terrain robot. The robot is based on an electric children quad bike and is modified to be driven by wire. In terms of climbing properties, operation time and payload it can compete with some of the commercially available platforms, but at a far lower price.}, language = {en} } @article{HueningJaekelFrancoisetal.1996, author = {H{\"u}ning, Felix and Jaekel, C. and Francois, I. and Kyas, G.}, title = {Microwave surface impedance measurements on high-Tc superconductors / Jaekel, C. ; Francois, I. ; Kyas, G. ; H{\"u}ning, F. ; Roskos, H. G. ; Borghs, G. ; Kurz, H.}, series = {Czechoslovak Journal of Physics. 46 (1996), H. Suppl. 2}, journal = {Czechoslovak Journal of Physics. 46 (1996), H. Suppl. 2}, number = {46}, publisher = {Springer Science+Business Media}, address = {Dordrecht}, isbn = {1572-9486}, pages = {1117 -- 1118}, year = {1996}, language = {en} } @article{HueningLukenSchilderetal.2001, author = {H{\"u}ning, Felix and Luken, Heiko and Schilder, Herbert and Eifert, Thomas}, title = {Magnetochemistry: Compounds and Concepts / Lueken, Heiko ; Schilder, Herbert ; Eifert, Thomas ; Handrick, Klaus ; H{\"u}ning, Felix}, series = {Advances in Solid State Physics. 201 (2001)}, journal = {Advances in Solid State Physics. 201 (2001)}, publisher = {-}, pages = {515 -- 532}, year = {2001}, language = {en} } @book{Huening2001, author = {H{\"u}ning, Felix}, title = {Magnetische Eigenschaften niederdimensionaler Chrom-, Ruthenium- und Niobhalogenide}, publisher = {Shaker}, address = {Aachen}, isbn = {3-8265-8551-8}, pages = {II, 122 S Ill., graph. Darst.}, year = {2001}, language = {en} } @inproceedings{HueningMund2023, author = {H{\"u}ning, Felix and Mund, Cindy}, title = {Integration of agile development in standard labs}, series = {51st Annual Conference of the European Society for Engineering Education (SEFI)}, booktitle = {51st Annual Conference of the European Society for Engineering Education (SEFI)}, doi = {10.21427/NK4Z-WS73}, pages = {11 Seiten}, year = {2023}, abstract = {In addition to the technical content, modern courses at university should also teach professional skills to enhance the competencies of students towards their future work. The competency driven approach including technical as well as professional skills makes it necessary to find a suitable way for the integration into the corresponding module in a scalable and flexible manner. Agile development, for example, is essential for the development of modern systems and applications and makes use of dedicated professional skills of the team members, like structured group dynamics and communication, to enable the fast and reliable development. This paper presents an easy to integrate and flexible approach to integrate Scrum, an agile development method, into the lab of an existing module. Due to the different role models of Scrum the students have an individual learning success, gain valuable insight into modern system development and strengthen their communication and organization skills. The approach is implemented and evaluated in the module Vehicle Systems, but it can be transferred easily to other technical courses as well. The evaluation of the implementation considers feedback of all stakeholders, students, supervisor and lecturers, and monitors the observations during project lifetime.}, language = {en} }