@inproceedings{SattlerSchneiderAngeleetal.2022, author = {Sattler, Johannes Christoph and Schneider, Iesse Peer and Angele, Florian and Atti, Vikrama and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Development of heliostat field calibration methods: Theory and experimental test results}, series = {SolarPACES conference proceedings}, booktitle = {SolarPACES conference proceedings}, number = {Vol. 1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.678}, pages = {9 Seiten}, year = {2022}, abstract = {In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut J{\"u}lich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy.}, language = {en} } @inproceedings{SurteesGillespieKernetal.2004, author = {Surtees, A. J. and Gillespie, A. and Kern, Alexander and Rousseau, A.}, title = {DEVELOPMENT OF A RISK ASSESSMENT CALCULATOR BASED ON A SIMPLIFIED FORM OF THE IEC 62305-2 STANDARD ON LIGHTNING PROTECTION}, year = {2004}, abstract = {Neue Blitzschutznorm IEC 62305. Entwicklung einer einfachen Software zur Risikoabw{\"a}gung}, language = {en} } @inproceedings{CaminosSchmitzAttietal.2022, author = {Caminos, Ricardo Alexander Chico and Schmitz, Pascal and Atti, Vikrama and Mahdi, Zahra and Teixeira Boura, Cristiano Jos{\´e} and Sattler, Johannes Christoph and Herrmann, Ulf and Hilger, Patrick and Dieckmann, Simon}, title = {Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086262}, pages = {8 Seiten}, year = {2022}, abstract = {The Solar-Institut J{\"u}lich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed.}, language = {en} } @inproceedings{TakenagaHerreraWerneretal.2013, author = {Takenaga, Shoko and Herrera, Cony F. and Werner, Frederik and Biselli, Manfred and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef and {\"O}hlschl{\"a}ger, Peter and Wagner, Torsten}, title = {Detection of the metabolic activity of cells by differential measurements based on a single light-addressable potentiometric sensor chip}, series = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, booktitle = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, organization = {Dresdner Sensor-Symposium <11, 2013>}, isbn = {978-3-9813484-5-3}, pages = {63 -- 67}, year = {2013}, language = {en} } @inproceedings{RochefortVerverGrunendahletal.2005, author = {Rochefort, E. de and Verver, M. and Grunendahl, A. and Mooi, H. and Butenweg, Christoph}, title = {Detailed modelling of the lumbar spine for investigation of low back pain}, series = {Digital Human Modeling for Design and Engineering Symposium : Iowa City, Iowa June 14-16, 2005. (SAE technical papers series ; 2005-1-2716)}, booktitle = {Digital Human Modeling for Design and Engineering Symposium : Iowa City, Iowa June 14-16, 2005. (SAE technical papers series ; 2005-1-2716)}, publisher = {SAE International}, address = {Warrendale, Pa.}, organization = {Society of Automotive Engineers}, issn = {0096-736X}, doi = {10.4271/2005-01-2716}, pages = {1 -- 11}, year = {2005}, language = {en} } @inproceedings{HardtAbdelGawadMartinetal.1975, author = {Hardt, Arno and Abdel-Gawad, A and Martin, S. and Reich, J.}, title = {Design procedures for the Juelich QQDDQ high resolution spectrometer}, series = {Proceedings, 5th International Conference on Magnet Technology (MT-5) : Rome, Italy, April 21-25, 1975}, booktitle = {Proceedings, 5th International Conference on Magnet Technology (MT-5) : Rome, Italy, April 21-25, 1975}, pages = {45 -- 51}, year = {1975}, language = {en} } @inproceedings{ButenwegRajan2014, author = {Butenweg, Christoph and Rajan, Sreelakshmy}, title = {Design and construction techniques of AAC masonry buildings in earthquakes regions}, series = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, booktitle = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, year = {2014}, language = {en} } @inproceedings{Dielmann2002, author = {Dielmann, Klaus-Peter}, title = {Darstellung des Erneuerbaren Energiegesetzes (EEG) und dessen Auswirkungen}, year = {2002}, abstract = {Erneuerbares Energien-Gesetz: Anwendungsbereich, Abnahme- und Verg{\"u}tungspflicht, Verg{\"u}tungss{\"a}tze, Netzkosten, Ausgleichsregelungen Auswirkungen des EEG: Photovoltaik, Windkraft, Biomasse, Wasserkraft, Kl{\"a}r-, Deponie- und Grubengas, Geothermie Zusammenfassung und Ausblick}, subject = {Energierecht}, language = {de} } @inproceedings{ButenwegMarinkovic2018, author = {Butenweg, Christoph and Marinkovic, Marko}, title = {Damage reduction system for masonry infill walls under seismic loading}, series = {ce/papers}, volume = {2}, booktitle = {ce/papers}, number = {4}, publisher = {Ernst \& Sohn Verlag}, address = {Berlin}, doi = {10.1002/cepa.863}, pages = {267 -- 273}, year = {2018}, abstract = {Reinforced concrete (RC) frames with masonry infills are frequently used in seismic regions all over the world. Generally masonry infills are considered as nonstructural elements and thus are typically neglected in the design process. However, the observations made after strong earthquakes have shown that masonry infills can modify the dynamic behavior of the structure significantly. The consequences were total collapses of buildings and loss of human lives. This paper presents the new system INODIS (Innovative Decoupled Infill System) developed within the European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in RC Buildings). INODIS decouples the frame and the masonry infill by means of special U-shaped rubbers placed in between frame and infill. The effectiveness of the system was investigated by means of full scale tests on RC frames with masonry infills subjected to in-plane and out-of-plane loading. Furthermore small specimen tests were conducted to determine material characteristics of the components and the resistances of the connections. Finally, a micromodel was developed to simulate the in-plane behavior of RC frames infilled with AAC blocks with and without installation of the INODIS system.}, language = {en} } @inproceedings{SchulteSchwagerFrantzetal.2022, author = {Schulte, Jonas and Schwager, Christian and Frantz, Cathy and Schloms, Felix and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios}, series = {SolarPACES conference proceedings}, booktitle = {SolarPACES conference proceedings}, number = {Vol. 1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.693}, pages = {9 Seiten}, year = {2022}, abstract = {A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so.}, language = {en} } @inproceedings{PaulsenHoffstadtKrafftetal.2020, author = {Paulsen, Svea and Hoffstadt, Kevin and Krafft, Simone and Leite, A. and Zang, J. and Fonseca-Zang, W. and Kuperjans, Isabel}, title = {Continuous biogas production from sugarcane as sole substrate}, series = {Energy Reports}, volume = {6}, booktitle = {Energy Reports}, number = {Supplement 1}, publisher = {Elsevier}, doi = {10.1016/j.egyr.2019.08.035}, pages = {153 -- 158}, year = {2020}, language = {en} } @inproceedings{KernKrichel2002, author = {Kern, Alexander and Krichel, Frank}, title = {Considerations about the lightning protection system of mains independent renewable energy hybrid-systems - practical experiences}, year = {2002}, abstract = {In the paper a lightning protection design concept for renewable energy hybrid-systems without power mains connection is described. Based on a risk analysis protection measures against direct strikes and overvoltages are shown in an overview. The design concept is realized exemplarily for the hybrid-system VATALI on the Greek island Crete. VATALI, not lightning protected at that time, was a victim of a lightning strike in the year 2000 causing destructions and damages of some mechanical and electrical components with costs of approx. 60.000 €. The hardware costs for the protection measures were about 15.000 €: about 50\% of the costs are due to protection measures against direct strikes, 50\% are due to overvoltage protection.}, language = {en} } @inproceedings{LatzkeAlexopoulosKronhardtetal.2015, author = {Latzke, Markus and Alexopoulos, Spiros and Kronhardt, Valentina and Rend{\´o}n, Carlos and Sattler, Johannes, Christoph}, title = {Comparison of Potential Sites in China for Erecting a Hybrid Solar Tower Power Plant with Air Receiver}, series = {Energy Procedia}, booktitle = {Energy Procedia}, issn = {1876-6102}, doi = {10.1016/j.egypro.2015.03.142}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @inproceedings{HoeflerKneerGrossetal.2015, author = {H{\"o}fler, M. and Kneer, R. and Groß, Rolf Fritz and Kehrmann, K.}, title = {Chemical determination of oxygen transfer rates, transfer efficiencies and interphases evoked by aeration elements for liquid flows}, series = {Computational Methods in Multiphase Flow VIII. - (WIT Transactions on Engineering Sciences ; Volume 89)}, booktitle = {Computational Methods in Multiphase Flow VIII. - (WIT Transactions on Engineering Sciences ; Volume 89)}, editor = {Vorobieff, P.}, publisher = {WIT Press}, address = {Southampton}, isbn = {978-1-84564-946-3 (Print-Ausgabe)}, issn = {1746-4471}, pages = {89 -- 101}, year = {2015}, language = {en} } @inproceedings{KasparGroebelKuperjansetal.2013, author = {Kaspar, K. and Groebel, Simone and Kuperjans, Isabel and Dielmann, Klaus-Peter and Selmer, Thorsten}, title = {Charakterisierung der Bioz{\"o}nose von Biogasfermentern in Abh{\"a}ngigkeit verschiedener Substrate}, series = {Biogas 2013 : 6. Innovationskongress, 23. - 24.05.2013, Osnabr{\"u}ck, Tagungsband}, booktitle = {Biogas 2013 : 6. Innovationskongress, 23. - 24.05.2013, Osnabr{\"u}ck, Tagungsband}, publisher = {Profair Consult+Project}, address = {Hildesheim}, issn = {978-3-9813776-3-7}, pages = {69 -- 74}, year = {2013}, language = {de} } @inproceedings{ButenwegGellertReindl2008, author = {Butenweg, Christoph and Gellert, Christoph and Reindl, Lukas}, title = {Capacity design of masonry buildings under cyclic loading}, series = {Seismic Risk : Earthquakes in North-Western Europe ; international colloquium ; Li{\`e}ge on 11 and 12 September 2008 / Belgian Seismic Group (BeSeiG). Ed.: T. Camlebeeck ...}, booktitle = {Seismic Risk : Earthquakes in North-Western Europe ; international colloquium ; Li{\`e}ge on 11 and 12 September 2008 / Belgian Seismic Group (BeSeiG). Ed.: T. Camlebeeck ...}, publisher = {Editions de l'Universit{\´e} de Li{\`e}ge}, address = {Li{\`e}ge}, organization = {Belgian Seismic Group}, isbn = {978-2-87456-063-7}, pages = {201 -- 208}, year = {2008}, language = {en} } @inproceedings{KalkerTollHolleretal.2004, author = {Kalker, Ines and Toll, B. and Holler, Stefan and Butenweg, Christoph and Topping, B. H. V. and Mota Soares, C. A.}, title = {Capacity analysis of textile retrofitted unreinforced masonry}, series = {Proceedings of the Seventh International Conference on Computational Structures Technology : [Lisbon, Portugal, 7 - 9 September 2004] / ed. by B. H. V. Topping ...}, booktitle = {Proceedings of the Seventh International Conference on Computational Structures Technology : [Lisbon, Portugal, 7 - 9 September 2004] / ed. by B. H. V. Topping ...}, publisher = {Civil-Comp Press}, address = {Stirling}, organization = {International Conference on Computational Structures Technology <7, 2004, Lissabon>}, isbn = {0-948749-95-4}, doi = {10.4203/ccp.79.194}, pages = {431 -- 432}, year = {2004}, language = {en} } @inproceedings{KernBeierlZischank2009, author = {Kern, Alexander and Beierl, Ottmar and Zischank, Wolfgang}, title = {Calculation of the separation distance according to IEC 62305-3: 2006-10 - Remarks for the application and simplified methods}, year = {2009}, abstract = {[Paper of the X International Symposium on Lightning Protection 9th - 13th November, 2009 - Curitiba, Brazil. 6 pages] The international standard IEC 62305-3, published in 2006, requires as an integral part of the lightning protection system (LPS) the consideration of a separation distance between the conductors of the LPS and metal and electrical installations inside the structure to be protected. IEC 62305-3 gives two different methods for this calculation: a standard, simplified approach and a more detailed approach, which differ especially regarding the treatment of the current sharing effect on the LPS conductors. Hence, different results for the separation distance are possible, leading to some discrepancies in the use of the standard. The standard approach defined in the main part (Clause 6.3) and in Annex C of the standard in some cases may lead to a severe oversizing of the required separation distance. The detailed approach described in Annex E naturally gives more correct results. However, a calculation of the current sharing amongst all parts of the air-termination and downconductor network is necessary, in many cases requiring the use of network analysis programs. In this paper simplified methods for the assessment of the current sharing are presented, which are easy to use as well as sufficiently adequate.}, subject = {Blitzschutz}, language = {de} } @inproceedings{PfundtVogelsangGerling1988, author = {Pfundt, H. and Vogelsang, D. and Gerling, Ulrich}, title = {Calculation of the crust profile in aluminium reduction cells by thermal computer modelling}, series = {Light metals 1989 : 118th annual meeting of the Minerals, Metals and Materials Society, Las Vegas, NV, Feb. 27 - Mar. 03. 1989}, booktitle = {Light metals 1989 : 118th annual meeting of the Minerals, Metals and Materials Society, Las Vegas, NV, Feb. 27 - Mar. 03. 1989}, publisher = {Minerals, Metals and Materials Soc.}, address = {Warrendale, Pa.}, pages = {371 -- 377}, year = {1988}, language = {en} } @inproceedings{KernSchelthoffMathieu2012, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Calculation of interception efficiencies for mesh-type air-terminations according to IEC 62305-3 using a dynamic electro-geometrical model}, series = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, booktitle = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {International Conference on Lightning Protection <2012, Wien>}, isbn = {978-1-4673-1896-9 (E-Book) ; 978-1-4673-1898-3 (Print)}, pages = {1 -- 6}, year = {2012}, language = {en} }