@incollection{HebelHerrmannRitzetal.2022, author = {Hebel, Christoph and Herrmann, Ulf and Ritz, Thomas and R{\"o}th, Thilo and Anthrakidis, Anette and B{\"o}ker, J{\"o}rg and Franzke, Till and Grodzki, Thomas and Merkens, Torsten and Sch{\"o}ttler, Mirjam}, title = {FlexSHARE - Methodisches Framework zur innovativen Gestaltung der urbanen Mobilit{\"a}t durch Sharing- Angebote}, series = {Transforming Mobility - What Next?}, booktitle = {Transforming Mobility - What Next?}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-36429-8}, doi = {10.1007/978-3-658-36430-4_10}, pages = {153 -- 169}, year = {2022}, abstract = {Das Ziel des INTERREG-Projektes „SHAREuregio" (FKZ: 34.EFRE-0300134) ist es, grenz{\"u}berschreitende Mobilit{\"a}t in der Euregio Rhein-Maas-Nord zu erm{\"o}glichen und zu f{\"o}rdern. Dazu soll ein elektromobiles Car- und Bikesharing- System entwickelt und in der Stadt M{\"o}nchengladbach, im Kreis Viersen sowie in den Gemeinden Roermond und Venlo (beide NL) zusammen mit den Partnern Wirtschaftsf{\"o}rderung M{\"o}nchengladbach, Wirtschaftsf{\"o}rderung f{\"u}r den Kreis Viersen, NEW AG, Goodmoovs (NL), Greenflux (NL) und der FH Aachen implementiert werden. Zun{\"a}chst richtet sich das Angebot, bestehend aus 40 Elektroautos und 40 Elektrofahrr{\"a}dern, an Unternehmen und wird nach einer Erprobungsphase, mit einer gr{\"o}ßeren Anzahl an Fahrzeugen, auch f{\"u}r Privatpersonen verf{\"u}gbar gemacht werden. Die Fahrzeuge stehen bei den jeweiligen Anwendungspartnern in Deutschland und den Niederlanden. Im Rahmen dieses Projektes hat die FH Aachen „FlexSHARE" entwickelt - ein methodisches Framework zur innovativen Gestaltung urbaner Sharing- Angebote. Das Framework erm{\"o}glicht es, anhand von messbaren Kenngr{\"o}ßen, bedarfsgerechte und auf die Region abgestimmte Sharing-Systeme zu entwickeln.}, language = {de} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Antriebssystemanpassungen zur Verwendung von LPG als Flugkraftstoff}, series = {Motortechnische Zeitschrift (MTZ)}, volume = {2022}, journal = {Motortechnische Zeitschrift (MTZ)}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s35146-021-0778-2}, pages = {58 -- 62}, year = {2022}, abstract = {Auch in der allgemeinen Luftfahrt w{\"a}re es w{\"u}nschenswert, die bereits vorhandenen Verbrennungsmotoren mit weniger CO₂-tr{\"a}chtigen Kraftstoffen als dem heute weit verbreiteten Avgas 100LL betreiben zu k{\"o}nnen. Es ist anzunehmen, dass im Vergleich die unter Normalbedingungen gasf{\"o}rmigen Kraftstoffe CNG, LPG oder LNG deutlich weniger Emissionen produzieren. Erforderliche Antriebssystemanpassungen wurden im Rahmen eines Forschungsprojekts an der FH Aachen untersucht.}, language = {de} } @inproceedings{SchopenShabaniEschetal.2022, author = {Schopen, Oliver and Shabani, Bahman and Esch, Thomas and Kemper, Hans and Shah, Neel}, title = {Quantitative evaluation of health management designs for fuel cell systems in transport vehicles}, series = {2nd UNITED-SAIG International Conference Proceedings}, booktitle = {2nd UNITED-SAIG International Conference Proceedings}, editor = {Rahim, S.A. and As'arry, A. and Zuhri, M.Y.M. and Harmin, M.Y. and Rezali, K.A.M. and Hairuddin, A.A.}, pages = {1 -- 3}, year = {2022}, abstract = {Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified.}, language = {en} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Powertrain Adaptions for LPG Usage in General Aviation}, series = {MTZ worldwide}, volume = {2022}, journal = {MTZ worldwide}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s38313-021-0756-6}, pages = {58 -- 62}, year = {2022}, abstract = {In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences.}, language = {en} } @misc{KeimerGirbigMayntzetal.2022, author = {Keimer, Jona and Girbig, Leo and Mayntz, Joscha and Tegtmeyer, Philipp and Wendland, Frederik and Dahman, Peter and Fisher, Alex and Dorrington, Graham}, title = {Flight mission optimization for eco-efficiency in consideration of electric regeneration and atmospheric conditions}, series = {AIAA AVIATION 2022 Forum}, journal = {AIAA AVIATION 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-4118}, year = {2022}, abstract = {The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range.}, language = {en} } @inproceedings{VeettilRakshitSchopenetal.2022, author = {Veettil, Yadu Krishna Morassery and Rakshit, Shantam and Schopen, Oliver and Kemper, Hans and Esch, Thomas and Shabani, Bahman}, title = {Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_55}, pages = {296 -- 299}, year = {2022}, abstract = {Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench.}, language = {en} } @inproceedings{TamaldinMansorMatYaminetal.2022, author = {Tamaldin, Noreffendy and Mansor, Muhd Rizuan and Mat Yamin, Ahmad Kamal and Bin Abdollah, Mohd Fazli and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_50}, pages = {274 -- 278}, year = {2022}, abstract = {The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @inproceedings{ChicoCaminosSchmitzAttietal.2022, author = {Chico Caminos, Ricardo Alexander and Schmitz, Pascal and Atti, Vikrama Naga Babu and Mahdi, Zahra and Teixeira Boura, Cristiano Jos{\´e} and Sattler, Johannes Christoph and Herrmann, Ulf and Hilger, Patrick and Dieckmann, Simon}, title = {Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086262}, pages = {8 Seiten}, year = {2022}, abstract = {The Solar-Institut J{\"u}lich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed.}, language = {en} } @inproceedings{SattlerSchneiderAngeleetal.2022, author = {Sattler, Johannes Christoph and Schneider, Iesse Peer and Angele, Florian and Atti, Vikrama Naga Babu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Development of heliostat field calibration methods: Theory and experimental test results}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.678}, pages = {9 Seiten}, year = {2022}, abstract = {In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut J{\"u}lich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy.}, language = {en} } @inproceedings{SattlerAttiAlexopoulosetal.2022, author = {Sattler, Johannes Christoph and Atti, Vikrama Naga Babu and Alexopoulos, Spiros and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf and Dutta, Siddharth and Kioutsioukis, Ioannis}, title = {DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.731}, pages = {9 Seiten}, year = {2022}, abstract = {This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut J{\"u}lich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 \% based on the tested days. The result fulfils SIJ's aim to achieve a reliability of around 70 \%, but SIJ aims to still improve the DNI forecast quality.}, language = {en} } @article{BergmannMoehrenBraunetal.2023, author = {Bergmann, Ole and M{\"o}hren, Felix and Braun, Carsten and Janser, Frank}, title = {On the influence of elasticity on swept propeller noise}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2023-0210}, year = {2023}, abstract = {High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation.}, language = {en} } @article{ThomaThomessenGardietal.2023, author = {Thoma, Andreas and Thomessen, Karolin and Gardi, Alessandro and Fisher, A. and Braun, Carsten}, title = {Prioritising paths: An improved cost function for local path planning for UAV in medical applications}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {First View}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {0001-9240 (Print)}, doi = {10.1017/aer.2023.68}, pages = {1 -- 18}, year = {2023}, abstract = {Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50\% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26\%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30\%. These results show promise for further enhancements and to support broader applicability.}, language = {en} } @inproceedings{SchwagerAngeleSchwarzboezletal.2023, author = {Schwager, Christian and Angele, Florian and Schwarzb{\"o}zl, Peter and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Model predictive assistance for operational decision making in molten salt receiver systems}, series = {SolarPACES: Solar Power \& Chemical Energy Systems}, booktitle = {SolarPACES: Solar Power \& Chemical Energy Systems}, number = {2815 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4623-6}, issn = {1551-7616 (online)}, doi = {10.1063/5.0151514}, pages = {8 Seiten}, year = {2023}, abstract = {Despite the challenges of pioneering molten salt towers (MST), it remains the leading technology in central receiver power plants today, thanks to cost effective storage integration and high cost reduction potential. The limited controllability in volatile solar conditions can cause significant losses, which are difficult to estimate without comprehensive modeling [1]. This paper presents a Methodology to generate predictions of the dynamic behavior of the receiver system as part of an operating assistance system (OAS). Based on this, it delivers proposals if and when to drain and refill the receiver during a cloudy period in order maximize the net yield and quantifies the amount of net electricity gained by this. After prior analysis with a detailed dynamic two-phase model of the entire receiver system, two different reduced modeling approaches where developed and implemented in the OAS. A tailored decision algorithm utilizes both models to deliver the desired predictions efficiently and with appropriate accuracy.}, language = {en} } @inproceedings{LahrsKrisamHerrmann2023, author = {Lahrs, Lennart and Krisam, Pierre and Herrmann, Ulf}, title = {Envisioning a collaborative energy system planning platform for the energy transition at the district level}, series = {ECOS 2023. The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems}, booktitle = {ECOS 2023. The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems}, publisher = {Procedings of ECOS 2023}, doi = {10.52202/069564-0284}, pages = {3163 -- 3170}, year = {2023}, abstract = {Residential and commercial buildings account for more than one-third of global energy-related greenhouse gas emissions. Integrated multi-energy systems at the district level are a promising way to reduce greenhouse gas emissions by exploiting economies of scale and synergies between energy sources. Planning district energy systems comes with many challenges in an ever-changing environment. Computational modelling established itself as the state-of-the-art method for district energy system planning. Unfortunately, it is still cumbersome to combine standalone models to generate insights that surpass their original purpose. Ideally, planning processes could be solved by using modular tools that easily incorporate the variety of competing and complementing computational models. Our contribution is a vision for a collaborative development and application platform for multi-energy system planning tools at the district level. We present challenges of district energy system planning identified in the literature and evaluate whether this platform can help to overcome these challenges. Further, we propose a toolkit that represents the core technical elements of the platform. Lastly, we discuss community management and its relevance for the success of projects with collaboration and knowledge sharing at their core.}, language = {en} } @article{Pfaff2023, author = {Pfaff, Raphael}, title = {Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach}, series = {Railway Engineering Science}, volume = {31}, journal = {Railway Engineering Science}, number = {2}, publisher = {SpringerOpen}, issn = {2662-4753 (eISSN)}, doi = {10.1007/s40534-023-00303-7}, pages = {135 -- 144}, year = {2023}, abstract = {The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.}, language = {en} } @incollection{HeimesKampkerKehreretal.2023, author = {Heimes, Heiner Hans and Kampker, Achim and Kehrer, Mario and D{\"u}nnwald, Simon and Heetfeld, Lennart and Polzenberg, Jens and Budde, Lucas and Keusen, Maximilian and Pandey, Rahul and R{\"o}th, Thilo}, title = {Fahrzeugstruktur}, series = {Elektromobilit{\"a}t: Grundlagen einer Fortschrittstechnologie}, booktitle = {Elektromobilit{\"a}t: Grundlagen einer Fortschrittstechnologie}, editor = {Kampker, Achim and Heimes, Heiner Hans}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-65811-6 (Print)}, doi = {10.1007/978-3-662-65812-3_5}, pages = {69 -- 106}, year = {2023}, abstract = {Um sowohl Treibhausgas-Emissionen zu verringern als auch Kraftstoffressourcen zu schonen, wird zunehmend an einer Transformation konventionell angetriebener Kraftfahrzeuge hin zu elektrifizierten Antriebskonzepten gearbeitet. Basierend auf herk{\"o}mmlichen Fahrzeugen mit Verbrennungsmotor wurde eine Vielzahl neuer Antriebssysteme mit verschiedenem Elektrifizierungsgrad entwickelt. Mitte der 1990er-Jahre kamen erste Fahrzeuge mit einem Hybridantrieb auf den Markt. Die Kombination aus Verbrennungs- und Elektromotor erlaubt eine Verbrauchsreduktion und Bremsenergier{\"u}ckgewinnung sowie lokal emissionsfreies Fahren.}, language = {de} } @incollection{HeimesKampkerDornetal.2023, author = {Heimes, Heiner Hans and Kampker, Achim and Dorn, Benjamin and Kehrer, Mario and D{\"u}nnwald, Simon and Badura, Dennis and Terren, Maximilian and R{\"o}th, Thilo}, title = {Produktionsprozesse der Fahrzeugstruktur}, series = {Elektromobilit{\"a}t: Grundlagen einer Fortschrittstechnologie}, booktitle = {Elektromobilit{\"a}t: Grundlagen einer Fortschrittstechnologie}, editor = {Kampker, Achim and Heimes, Heiner Hans}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-65811-6 (Print)}, doi = {10.1007/978-3-662-65812-3_13}, pages = {227 -- 247}, year = {2023}, language = {de} } @book{JanserHavermannHoeveleretal.2023, author = {Janser, Frank and Havermann, Marc and Hoeveler, Bastian and Hertz, Cyril and Bergmann, Ole}, title = {Str{\"o}mungslehre und Aerodynamik : inkompressible Profile und Tragfl{\"u}gelaerodynamik, Band 2}, edition = {4. Auflage}, publisher = {Mainz}, address = {Aachen}, isbn = {978-3-8107-0261-6}, pages = {XIII, 211 Seiten}, year = {2023}, abstract = {Das vorliegende Buch dient als Grundlage f{\"u}r die Bachelor- und Master-Ausbildung von Studierenden im Fachgebiet Str{\"o}mungslehre und Aerodynamik. Im hier behandelten Teilbereich der inkompressiblen Profile und Tragfl{\"u}gelaerodynamik werden schwerpunktm{\"a}ßig die folgenden Themen besprochen: - Profilaerodynamik - Tragfl{\"u}gelaerodynamik - Flugzeugpolare - Methoden zur Flugbereichserweiterung - Schwebeschub und Schwebeleistung - Propellerblattaerodynamik - Numerische Methoden zur Tragfl{\"u}gelberechnung}, language = {de} } @article{SchulzeFeyerlPischinger2023, author = {Schulze, Sven and Feyerl, G{\"u}nter and Pischinger, Stefan}, title = {Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions}, series = {Energies}, volume = {16}, journal = {Energies}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16135171}, pages = {29 Seiten, Art. Nr.: 5171}, year = {2023}, abstract = {To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15\% more efficiently by 2025 and 30\% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2\% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks.}, language = {en} } @article{BoehnischBraunMuscarelloetal.2023, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {A sensitivity study on aeroelastic instabilities of slender wings with a large propeller}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2023-1893}, pages = {1 -- 14}, year = {2023}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan. These highly flexible dynamic systems can exhibit uncommon aeroelastic instabilities, which should be carefully investigated to ensure safe operation. The interaction between the propeller and the wing is of particular importance. It is known that whirl flutter is stabilized by wing motion and wing aerodynamics. This paper investigates the effect of a propeller onto wing flutter as a function of span position and mounting stiffness between the propeller and wing. The analysis of a comparison between a tractor and pusher configuration has shown that the coupled system is more stable than the standalone wing for propeller positions near the wing tip for both configurations. The wing fluttermechanism is mostly affected by the mass of the propeller and the resulting change in eigenfrequencies of the wing. For very weak mounting stiffnesses, whirl flutter occurs, which was shown to be stabilized compared to a standalone propeller due to wing motion. On the other hand, the pusher configuration is, as to be expected, the more critical configuration due to the attached mass behind the elastic axis.}, language = {de} }