@inproceedings{PaslighFunkeRoethetal.2010, author = {Pasligh, N. and Funke, D. and R{\"o}th, Thilo and Krack, R.}, title = {Leichtbau Quertrager als Stahlblech-Aluminiumdruckguss-Hybrid - Von der numerischen Berechnung bis zum realen Prototypen}, series = {VDI BERICHTE}, booktitle = {VDI BERICHTE}, publisher = {VDI Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092107-5}, pages = {688 Seiten}, year = {2010}, language = {de} } @incollection{ReimerBraunWellmeretal.2010, author = {Reimer, Lars and Braun, Carsten and Wellmer, Georg and Behr, Marek and Ballmann, Josef}, title = {Development of a modular method for computational aero-structural analysis of aircraft}, series = {Summary of flow modulation and fluid-structure interaction findings. Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany, 1997-2008 / ed.: Wolfgang Schr{\"o}der. Notes on numerical fluid mechanics and multidisciplinary design. Vol. 109}, booktitle = {Summary of flow modulation and fluid-structure interaction findings. Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany, 1997-2008 / ed.: Wolfgang Schr{\"o}der. Notes on numerical fluid mechanics and multidisciplinary design. Vol. 109}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-04087-0}, pages = {205 -- 238}, year = {2010}, language = {en} } @incollection{Dachwald2010, author = {Dachwald, Bernd}, title = {Solar sail dynamics and control}, series = {Encyclopedia of Aerospace Engineering}, booktitle = {Encyclopedia of Aerospace Engineering}, publisher = {Wiley}, address = {Hoboken}, doi = {10.1002/9780470686652.eae292}, year = {2010}, abstract = {Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given.}, language = {en} } @inproceedings{KapoorBraunBoller2010, author = {Kapoor, Hrshi and Braun, Carsten and Boller, Christian}, title = {Modelling and optimisation of maintenance intervals to realize structural health monitoring applications on aircraft}, series = {Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM]}, booktitle = {Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM]}, editor = {Casciati, Fabio}, publisher = {DEStech Publ.}, address = {Lancaster, Pa.}, isbn = {978-1-60595-024-2}, pages = {55 -- 63}, year = {2010}, language = {en} } @article{Esch2010, author = {Esch, Thomas}, title = {Trends in commercial vehicle powertrains}, series = {ATZautotechnology}, volume = {2010}, journal = {ATZautotechnology}, number = {10}, publisher = {Vieweg \& Sohn}, address = {Wiesbaden}, issn = {2192-886X}, doi = {10.1007/BF03247185}, pages = {26 -- 31}, year = {2010}, abstract = {Low emission zones and truck bans, the rising price of diesel and increases in road tolls: all of these factors are putting serious pressure on the transport industry. Commercial vehicle manufacturers and their suppliers are in the process of identifying new solutions to these challenges as part of their efforts to meet the EEV (enhanced environmentally friendly vehicle) limits, which are currently the most robust European exhaust and emissions standards for trucks and buses.}, language = {en} } @article{ScholzLeyDachwaldetal.2010, author = {Scholz, A. and Ley, Wilfried and Dachwald, Bernd and Miau, J. J. and Juang, J. C.}, title = {Flight results of the COMPASS-1 picosatellite mission}, series = {Acta Astronautica. 67 (2010), H. 9-10}, journal = {Acta Astronautica. 67 (2010), H. 9-10}, isbn = {0094-5765}, pages = {1289 -- 1298}, year = {2010}, language = {en} } @article{MaiwaldDachwald2010, author = {Maiwald, Volker and Dachwald, Bernd}, title = {Mission Design for a Multiple-Rendezvous Mission to Jupiter's Trojans}, pages = {3}, year = {2010}, language = {en} } @techreport{EschFunkeRoosen2010, author = {Esch, Thomas and Funke, Harald and Roosen, Petra}, title = {SIoBiA - Safety Implications of Biofuels in Aviation}, publisher = {EASA}, address = {K{\"o}ln}, pages = {279 Seiten}, year = {2010}, abstract = {Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products. The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called "MOGAS" (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured. Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 \% volume per volume (v/v) (bio-)methanol or up to 5 \% v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels. Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline's chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots.}, language = {en} } @article{EschFunkeRoosenetal.2011, author = {Esch, Thomas and Funke, Harald and Roosen, Peter and Jarolimek, Ulrich}, title = {Biogene Automobilkraftstoffe in der allgemeinen Luftfahrt}, series = {Motortechnische Zeitschrift (MTZ).}, volume = {72}, journal = {Motortechnische Zeitschrift (MTZ).}, number = {1}, publisher = {Springer Nature}, address = {Basel}, isbn = {0024-8525}, doi = {10.1365/s35146-011-0013-7}, pages = {54 -- 59}, year = {2011}, language = {de} } @article{FunkeReckerBosschaertsetal.2011, author = {Funke, Harald and Recker, E. and Bosschaerts, W. and Boonen, Q. and B{\"o}rner, Sebastian}, title = {Parametrical study of the „Micromix" hydrogen combustion principle}, series = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, journal = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, year = {2011}, language = {en} } @article{EschFunkeRoosenetal.2011, author = {Esch, Thomas and Funke, Harald and Roosen, Peter and Jarolimek, Ulrich}, title = {Biogenic Vehicle Fuels in General Aviation Aircrafts}, series = {MTZ worldwide. 72 (2011), H. 1}, journal = {MTZ worldwide. 72 (2011), H. 1}, publisher = {Springer Automotive Media}, address = {Wiesbaden}, pages = {38 -- 43}, year = {2011}, language = {en} } @article{FunkeBoernerFalketal.2011, author = {Funke, Harald and B{\"o}rner, Sebastian and Falk, F. and Hendrick, P.}, title = {Control system modifications and their effects on the operation of a hydrogen-fueled Auxiliary Power Unit}, series = {XX international symposium on air breathing engines 2011 : ISABE 2011, Gothenburg, Sweden, 12-16 September, 2011. Vol. 2.}, journal = {XX international symposium on air breathing engines 2011 : ISABE 2011, Gothenburg, Sweden, 12-16 September, 2011. Vol. 2.}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, VA}, isbn = {9781618391803}, pages = {929 -- 938}, year = {2011}, language = {en} } @article{FunkeBoernerKrebsetal.2011, author = {Funke, Harald and B{\"o}rner, Sebastian and Krebs, W. and Wolf, E.}, title = {Experimental Characterization of Low NOx Micromix Prototype Combustors for Industrial Gas Turbine Applications}, series = {ASME Turbo Expo 2011 ; Vancouver, Canada, June 6-10, 2011}, journal = {ASME Turbo Expo 2011 ; Vancouver, Canada, June 6-10, 2011}, year = {2011}, language = {en} } @article{RobinsonFunkeHendrick2011, author = {Robinson, A. E. and Funke, Harald and Hendrick, P.}, title = {Design and Testing of a Micromix Combustor With Recuperative Wall Cooling for a Hydrogen Fueled µ-Scale Gas Turbine}, series = {Journal of engineering for gas turbines and power}, volume = {133}, journal = {Journal of engineering for gas turbines and power}, number = {8}, publisher = {ASME}, address = {New York}, isbn = {1528-8919}, pages = {Art. Nr. 082301 , 8 Seiten}, year = {2011}, language = {en} } @article{BuehlerChristenKowalskietal.2011, author = {B{\"u}hler, Yves and Christen, Marc and Kowalski, Julia and Bartelt, Perry}, title = {Sensitivity of snow avalanche simulations to digital elevation model quality and resolution}, series = {Annals of Glaciology}, volume = {52}, journal = {Annals of Glaciology}, number = {58}, publisher = {Cambridge University Press}, address = {Cambridge}, isbn = {1727-5644}, pages = {72 -- 80}, year = {2011}, abstract = {Digital elevation models (DEMs), represent the three-dimensional terrain and are the basic input for numerical snow avalanche dynamics simulations. DEMs can be acquired using topographic maps or remote-sensing technologies, such as photogrammetry or lidar. Depending on the acquisition technique, different spatial resolutions and qualities are achieved. However, there is a lack of studies that investigate the sensitivity of snow avalanche simulation algorithms to the quality and resolution of DEMs. Here, we perform calculations using the numerical avalance dynamics model RAMMS, varying the quality and spatial resolution of the underlying DEMs, while holding the simulation parameters constant. We study both channelized and open-terrain avalanche tracks with variable roughness. To quantify the variance of these simulations, we use well-documented large-scale avalanche events from Davos, Switzerland (winter 2007/08), and from our large-scale avalanche test site, Valĺee de la Sionne (winter 2005/06). We find that the DEM resolution and quality is critical for modeled flow paths, run-out distances, deposits, velocities and impact pressures. Although a spatial resolution of ~25 m is sufficient for large-scale avalanche modeling, the DEM datasets must be checked carefully for anomalies and artifacts before using them for dynamics calculations.}, language = {en} } @inproceedings{KnoblochKowalskiBoesigeretal.2011, author = {Knobloch, V. and Kowalski, Julia and B{\"o}siger, P. and Kozerke, S.}, title = {Probabilistic Streamline Estimation from Accelerated Fourier Velocity Encoded Measurements}, series = {Proceedings of the 19th ISMRM International Society for Magnetic Resonance in Medicine}, booktitle = {Proceedings of the 19th ISMRM International Society for Magnetic Resonance in Medicine}, pages = {1215 -- 1215}, year = {2011}, language = {de} } @inproceedings{OlaruKowalskiSethietal.2011, author = {Olaru, Alexandra Maria and Kowalski, Julia and Sethi, Vaishali and Bl{\"u}mich, Bernhard}, title = {Fluid Transport in Porous Media probed by Relaxation-Exchange NMR}, series = {2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.}, booktitle = {2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.}, year = {2011}, language = {en} } @book{Schmitz2011, author = {Schmitz, G{\"u}nter}, title = {Elektrotechnik : Grundlagen der Elektrotechnik f{\"u}r Ingenieur-Studenten}, publisher = {Ventus Publ.}, address = {Frederiksberg}, isbn = {978-87-7681-786-2}, pages = {142 S. Ill., graph. Darst}, year = {2011}, language = {de} } @book{Schmitz2011, author = {Schmitz, G{\"u}nter}, title = {Elektronik : Grundlagen der Elektronik f{\"u}r Ingenieurstudenten}, publisher = {Ventus Publ.}, address = {Frederiksberg}, isbn = {978-87-7681-832-6}, pages = {164 S. : Ill., graph. Darst.}, year = {2011}, language = {de} } @incollection{FunkeBoernerHendricketal.2011, author = {Funke, Harald and B{\"o}rner, Sebastian and Hendrick, P. and Recker, E.}, title = {Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine}, series = {Progress in Propulsion Physics. Vol. 2}, booktitle = {Progress in Propulsion Physics. Vol. 2}, publisher = {EDP Sciences}, address = {Les Ulis}, isbn = {978-2-7598-0673-7}, pages = {475 -- 486}, year = {2011}, language = {en} }