@article{HaegerBongaertsSiegert2022, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent}, series = {Analytical Biochemistry}, journal = {Analytical Biochemistry}, number = {624}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1096-0309}, doi = {10.1016/j.ab.2022.114819}, pages = {Artikel 114819}, year = {2022}, abstract = {An improved and convenient ninhydrin assay for aminoacylase activity measurements was developed using the commercial EZ Nin™ reagent. Alternative reagents from literature were also evaluated and compared. The addition of DMSO to the reagent enhanced the solubility of Ruhemann's purple (RP). Furthermore, we found that the use of a basic, aqueous buffer enhances stability of RP. An acidic protocol for the quantification of lysine was developed by addition of glacial acetic acid. The assay allows for parallel processing in a 96-well format with measurements microtiter plates.}, language = {en} } @article{AkimbekovDigelTastambeketal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Marat, Adel K. and Turaliyeva, Moldir A. and Kaiyrmanova, Gulzhan K.}, title = {Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production}, series = {Biology}, volume = {11}, journal = {Biology}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2079-7737}, doi = {10.3390/biology11091306}, pages = {47 Seiten}, year = {2022}, abstract = {It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications.}, language = {en} } @article{ThiebesKleinZingsheimetal.2022, author = {Thiebes, Anja Lena and Klein, Sarah and Zingsheim, Jonas and M{\"o}ller, Georg H. and G{\"u}rzing, Stefanie and Reddemann, Manuel A. and Behbahani, Mehdi and Cornelissen, Christian G.}, title = {Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio}, series = {pharmaceutics}, volume = {14}, journal = {pharmaceutics}, number = {11}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/pharmaceutics14112421}, pages = {Artikel 2421}, year = {2022}, abstract = {Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4-33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90\% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50\%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing.}, language = {en} } @article{Timme2022, author = {Timme, Michael}, title = {Beweislast beim gutgl{\"a}ubigen Erwerb eines Kraftfahrzeugs ohne Erhalt der Zulassungsbescheinigung Teil II — Zugleich eine Besprechung von BGH, Urt. v. 23.9.2022 - V ZR 148/21, MDR 2022, 1542}, series = {Monatsschrift f{\"u}r Deutsches Recht}, volume = {77}, journal = {Monatsschrift f{\"u}r Deutsches Recht}, number = {1}, publisher = {Verlag Dr. Otto Schmidt}, address = {K{\"o}ln}, issn = {0340-1812}, doi = {doi.org/10.9785/mdtr-2023-770102}, pages = {r5 -- r7}, year = {2022}, abstract = {Im Handel mit Kraftfahrzeugen geh{\"o}ren Aspekte des gutgl{\"a}ubigen Erwerbs zu den beinahe allt{\"a}glichen Standardproblemen. Der BGH f{\"u}gt in seiner Entscheidung v. 23.9.2022-VZR148/21, MDR 2022, 1541 diesem im Detail breit gef{\"a}cherten Themenfeld einen weiteren Mosaikstein hinzu: Der Erwerber erhielt das verkaufte Kfz ohne {\"U}bergabe einer Zulassungsbescheinigung Teil II, behauptet aber, diese Bescheinigung sei dem vom ihm eingeschalteten Vermittler bei Erwerb (als F{\"a}lschung) vorgelegt worden. Tats{\"a}chlich befand sich das Original durchg{\"a}ngig beim wahren Eigent{\"u}mer, der nunmehr Herausgabe des Fahrzeugs verlangt. Der BGH sch{\"u}tzt in dieser Gestaltung im Ergebnis den Erwerber. Die Entscheidung ist in mehrfacher Hinsicht bemerkenswert.}, language = {de} } @article{KahmannRauschPluemeretal.2022, author = {Kahmann, Stephanie L. and Rausch, Valentin and Pl{\"u}mer, Jonathan and M{\"u}ller, Lars P. and Pieper, Martin and Wegmann, Kilian}, title = {The automized fracture edge detection and generation of three-dimensional fracture probability heat maps}, series = {Medical Engineering \& Physics}, volume = {2022}, journal = {Medical Engineering \& Physics}, number = {110}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, pages = {7 Seiten}, year = {2022}, abstract = {With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1-2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further.}, language = {en} } @article{SchneiderSchwabedalBialonski2022, author = {Schneider, Jules and Schwabedal, Justus T. C. and Bialonski, Stephan}, title = {Schlafspindeln - Funktion, Detektion und Nutzung als Biomarker f{\"u}r die psychiatrische Diagnostik}, series = {Der Nervenarzt}, journal = {Der Nervenarzt}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1433-0407}, doi = {10.1007/s00115-022-01340-z}, pages = {1 -- 8}, year = {2022}, abstract = {Hintergrund: Die Schlafspindel ist ein Graphoelement des Elektroenzephalogramms (EEG), das im Leicht- und Tiefschlaf beobachtet werden kann. Ver{\"a}nderungen der Spindelaktivit{\"a}t wurden f{\"u}r verschiedene psychiatrische Erkrankungen beschrieben. Schlafspindeln zeigen aufgrund ihrer relativ konstanten Eigenschaften Potenzial als Biomarker in der psychiatrischen Diagnostik. Methode: Dieser Beitrag liefert einen {\"U}berblick {\"u}ber den Stand der Wissenschaft zu Eigenschaften und Funktionen der Schlafspindeln sowie {\"u}ber beschriebene Ver{\"a}nderungen der Spindelaktivit{\"a}t bei psychiatrischen Erkrankungen. Verschiedene methodische Ans{\"a}tze und Ausblicke zur Spindeldetektion werden hinsichtlich deren Anwendungspotenzial in der psychiatrischen Diagnostik erl{\"a}utert. Ergebnisse und Schlussfolgerung: W{\"a}hrend Ver{\"a}nderungen der Spindelaktivit{\"a}t bei psychiatrischen Erkrankungen beschrieben wurden, ist deren exaktes Potenzial f{\"u}r die psychiatrische Diagnostik noch nicht ausreichend erforscht. Diesbez{\"u}glicher Erkenntnisgewinn wird in der Forschung gegenw{\"a}rtig durch ressourcenintensive und fehleranf{\"a}llige Methoden zur manuellen oder automatisierten Spindeldetektion ausgebremst. Neuere Detektionsans{\"a}tze, die auf Deep-Learning-Verfahren basieren, k{\"o}nnten die Schwierigkeiten bisheriger Detektionsmethoden {\"u}berwinden und damit neue M{\"o}glichkeiten f{\"u}r die praktisch}, language = {de} } @article{LindnerBurgerRutledgeetal.2022, author = {Lindner, Simon and Burger, Ren{\´e} and Rutledge, Douglas N. and Do, Xuan Tung and Rumpf, Jessica and Diehl, Bernd W. K. and Schulze, Margit and Monakhova, Yulia}, title = {Is the calibration transfer of multivariate calibration models between high- and low-field NMR instruments possible? A case study of lignin molecular weight}, series = {Analytical chemistry}, volume = {94}, journal = {Analytical chemistry}, number = {9}, publisher = {ACS Publications}, address = {Washington, DC}, isbn = {1520-6882}, doi = {10.1021/acs.analchem.1c05125}, pages = {3997 -- 4004}, year = {2022}, abstract = {Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize.}, language = {en} } @article{VahidpourAlghazaliAkcaetal.2022, author = {Vahidpour, Farnoosh and Alghazali, Yousef H. M. and Akca, Sevilay and Hommes, Gregor and Sch{\"o}ning, Michael Josef}, title = {An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H₂O₂ Vapor/Aerosol}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060202}, pages = {Arikel 202}, year = {2022}, abstract = {This work introduces a novel method for the detection of H₂O₂ vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H₂O₂. Changes in the IDEs' capacitance values (active sensor element versus passive sensor element) under H₂O₂ vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H₂O₂ vapor/aerosol. Room-temperature detection of H₂O₂ vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry.}, language = {en} } @article{BergmannMoehrenBraunetal.2023, author = {Bergmann, Ole and M{\"o}hren, Felix and Braun, Carsten and Janser, Frank}, title = {On the influence of elasticity on swept propeller noise}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2023-0210}, year = {2023}, abstract = {High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation.}, language = {en} } @article{ThomaThomessenGardietal.2023, author = {Thoma, Andreas and Thomessen, Karolin and Gardi, Alessandro and Fisher, A. and Braun, Carsten}, title = {Prioritising paths: An improved cost function for local path planning for UAV in medical applications}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {First View}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {0001-9240 (Print)}, doi = {10.1017/aer.2023.68}, pages = {1 -- 18}, year = {2023}, abstract = {Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50\% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26\%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30\%. These results show promise for further enhancements and to support broader applicability.}, language = {en} } @article{RuebbelkeVoegeleGrajewskietal.2023, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Cross border adjustment mechanism: Initial data for the assessment of hydrogen-based steel production}, series = {Data in Brief}, volume = {47}, journal = {Data in Brief}, number = {Article 108907}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2023.108907}, pages = {1 -- 5}, year = {2023}, abstract = {Ambitious climate targets affect the competitiveness of industries in the international market. To prevent such industries from moving to other countries in the wake of increased climate protection efforts, cost adjustments may become necessary. Their design requires knowledge of country-specific production costs. Here, we present country-specific cost figures for different production routes of steel, paying particular attention to transportation costs. The data can be used in floor price models aiming to assess the competitiveness of different steel production routes in different countries (R{\"u}bbelke, 2022).}, language = {en} } @article{CheenakulaGriebelMontagetal.2023, author = {Cheenakula, Dheeraja and Griebel, Kai and Montag, David and Gr{\"o}mping, Markus}, title = {Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, number = {11155235}, editor = {Huang, Xiaowu}, publisher = {Frontiers}, issn = {1664-302X}, doi = {10.3389/fmicb.2023.1155235}, pages = {1 -- 15}, year = {2023}, abstract = {Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80\% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.}, language = {en} } @article{RingersBialonskiEgeetal.2023, author = {Ringers, Christa and Bialonski, Stephan and Ege, Mert and Solovev, Anton and Hansen, Jan Niklas and Jeong, Inyoung and Friedrich, Benjamin M. and Jurisch-Yaksi, Nathalie}, title = {Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia}, series = {eLife}, volume = {12}, journal = {eLife}, publisher = {eLife Sciences Publications}, issn = {2050-084X}, doi = {10.7554/eLife.77701}, pages = {27 Seiten}, year = {2023}, abstract = {Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.}, language = {en} } @article{BergPostweilerSteuerDankertLeichtScholten2023, author = {Berg-Postweiler, Julia and Steuer-Dankert, Linda and Leicht-Scholten, Carmen}, title = {One size does not fit all: Applying antibias trainings in academia}, series = {The International Journal of Organizational Diversity}, volume = {24}, journal = {The International Journal of Organizational Diversity}, number = {1}, publisher = {Common Ground Research Networks}, issn = {2328-6261 (Print)}, doi = {10.18848/2328-6261/CGP/v24i01/1-23}, pages = {1 -- 23}, year = {2023}, abstract = {Antibias training is increasingly demanded and practiced in academia and industry to increase employees' sensitivity to discrimination, racism, and diversity. Under the heading of "Diversity Management," antibias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, promote awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of antibias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the article aims to explore how sustainable the effects of individual antibias trainings on participants' behavior are. In order to investigate this, participant observation in a qualitative pre-post setting was conducted, analyzing antibias training in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single antibias trainings and show that a target-group adaptive approach is mandatory owing to the background of the approach in early childhood education. Therefore, antibias work needs to be adapted to the target group's needs and realities of life. Furthermore, the study reveals that single antibias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This article is one of the first to scientifically evaluate antibias training effectiveness, especially in engineering sciences and the university context.}, language = {en} } @article{HaegerGrankinWagner2023, author = {Haeger, Gerrit and Grankin, Alina and Wagner, Michaela}, title = {Construction of an Aspergillus oryzae triple amylase deletion mutant as a chassis to evaluate industrially relevant amylases using multiplex CRISPR/Cas9 editing technology}, series = {Applied Research}, journal = {Applied Research}, number = {Early View}, publisher = {Wiley-VCH}, issn = {2702-4288}, doi = {10.1002/appl.202200106}, pages = {1 -- 15}, year = {2023}, abstract = {Aspergillus oryzae is an industrially relevant organism for the secretory production of heterologous enzymes, especially amylases. The activities of potential heterologous amylases, however, cannot be quantified directly from the supernatant due to the high background activity of native α-amylase. This activity is caused by the gene products of amyA, amyB, and amyC. In this study, an in vitro CRISPR/Cas9 system was established in A. oryzae to delete these genes simultaneously. First, pyrG of A. oryzae NSAR1 was mutated by exploiting NHEJ to generate a counter-selection marker. Next, all amylase genes were deleted simultaneously by co-transforming a repair template carrying pyrG of Aspergillus nidulans and flanking sequences of amylase gene loci. The rate of obtained triple knock-outs was 47\%. We showed that triple knockouts do not retain any amylase activity in the supernatant. The established in vitro CRISPR/Cas9 system was used to achieve sequence-specific knock-in of target genes. The system was intended to incorporate a single copy of the gene of interest into the desired host for the development of screening methods. Therefore, an integration cassette for the heterologous Fpi amylase was designed to specifically target the amyB locus. The site-specific integration rate of the plasmid was 78\%, with exceptional additional integrations. Integration frequency was assessed via qPCR and directly correlated with heterologous amylase activity. Hence, we could compare the efficiency between two different signal peptides. In summary, we present a strategy to exploit CRISPR/Cas9 for gene mutation, multiplex knock-out, and the targeted knock-in of an expression cassette in A. oryzae. Our system provides straightforward strain engineering and paves the way for development of fungal screening systems.}, language = {en} } @article{Pfaff2023, author = {Pfaff, Raphael}, title = {Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach}, series = {Railway Engineering Science}, volume = {31}, journal = {Railway Engineering Science}, number = {2}, publisher = {SpringerOpen}, issn = {2662-4753 (eISSN)}, doi = {10.1007/s40534-023-00303-7}, pages = {135 -- 144}, year = {2023}, abstract = {The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.}, language = {en} } @article{DellmannGloriusLitvinovetal.2023, author = {Dellmann, Sophia Florence and Glorius, J. and Litvinov, Yu A. and Reifarth, R. and Al-Khasawneh, Kafa and Aliotta, M. and Bott, L. and Br{\"u}ckner, Benjamin and Bruno, C. G. and Chen, Ruijiu and Davinson, T. and Dickel, T. and Dillmann, Iris and Dmytriev, D. and Erbacher, P. and Freire-Fern{\´a}ndez, D. and Forstner, Oliver and Geissel, H. and G{\"o}bel, K. and Griffin, Christopher J. and Grisenti, R. and Gumberidze, Alexandre and Haettner, Emma and Hagmann, Siegbert and Heil, M. and Heß, R. and Hillenbrand, P.-M. and Joseph, R. and Jurado, B. and Kozhuharov, Christophor and Kulikov, I. and L{\"o}her, Bastian and Langer, Christoph and Leckenby, Guy and Lederer-Woods, C. and Lestinsky, M. and Litvinov, S. A. and Lorenz, B. A. and Lorenz, E. and Marsh, J. and Menz, Esther Babette and Morgenroth, T. and Petridis, N. and Pibernat, Jerome and Popp, U. and Psaltis, Athanasios and Sanjari, Shahab and Scheidenberger, C. and Sguazzin, M. and Sidhu, Ragandeep Singh and Spillmann, Uwe and Steck, M. and St{\"o}hlker, T. and Surzhykov, A. and Swartz, J. A. and T{\"o}rnqvist, H. and Varga, L. and Vescovi, Diego and Weick, H. and Weigand, M. and Woods, P. and Xing, Y. and Yamaguchi, Taiyo}, title = {Proton capture on stored radioactive ¹¹⁸Te ions}, series = {EPJ Web of Conferences}, volume = {279}, journal = {EPJ Web of Conferences}, number = {Article Number: 11018}, publisher = {EDP Sciences}, issn = {2100-014X}, doi = {10.1051/epjconf/202327911018}, pages = {1 -- 5}, year = {2023}, abstract = {Experimental determination of the cross sections of proton capture on radioactive nuclei is extremely difficult. Therefore, it is of substantial interest for the understanding of the production of the p-nuclei. For the first time, a direct measurement of proton-capture cross sections on stored, radioactive ions became possible in an energy range of interest for nuclear astrophysics. The experiment was performed at the Experimental Storage Ring (ESR) at GSI by making use of a sensitive method to measure (p,γ) and (p,n) reactions in inverse kinematics. These reaction channels are of high relevance for the nucleosyn-thesis processes in supernovae, which are among the most violent explosions in the universe and are not yet well understood. The cross section of the ¹¹⁸Te(p,γ) reaction has been measured at energies of 6 MeV/u and 7 MeV/u. The heavy ions interacted with a hydrogen gas jet target. The radiative recombination process of the fully stripped ¹¹⁸Te ions and electrons from the hydrogen target was used as a luminosity monitor. An overview of the experimental method and preliminary results from the ongoing analysis will be presented.}, language = {en} } @article{MoraisSumanSchoeningetal.2023, author = {Morais, Paulo V. and Suman, Pedro H. and Sch{\"o}ning, Michael Josef and Siqueira Junior, Jos{\´e} R. and Orlandi, Marcelo O.}, title = {Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform}, series = {Chemosensors}, volume = {11}, journal = {Chemosensors}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080436}, pages = {Artikel 436}, year = {2023}, abstract = {Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as "environmental health hazards" due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte-insulator-semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring.}, language = {en} } @article{SchulzeFeyerlPischinger2023, author = {Schulze, Sven and Feyerl, G{\"u}nter and Pischinger, Stefan}, title = {Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions}, series = {Energies}, volume = {16}, journal = {Energies}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16135171}, pages = {29 Seiten, Art. Nr.: 5171}, year = {2023}, abstract = {To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15\% more efficiently by 2025 and 30\% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2\% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks.}, language = {en} } @article{WaldvogelFreylerHelmetal.2023, author = {Waldvogel, Janice and Freyler, Kathrin and Helm, Michael and Monti, Elena and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco V. and Ritzmann, Ramona and Albracht, Kirsten}, title = {Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks}, series = {Journal of Applied Physiology}, volume = {134}, journal = {Journal of Applied Physiology}, number = {1}, publisher = {American Physiological Society}, address = {Bethesda, Md.}, issn = {1522-1601 (Onlineausgabe)}, doi = {10.1152/japplphysiol.00279.2022}, pages = {190 -- 202}, year = {2023}, abstract = {This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.}, language = {en} }