@article{BuniatyanHuckPoghossianetal.2013, author = {Buniatyan, V. and Huck, Christina and Poghossian, Arshak and Aroutiounian, V. M. and Sch{\"o}ning, Michael Josef}, title = {BaxSr1-x TiO3/pc-Si heterojunction}, series = {Armenian journal of physics}, volume = {6}, journal = {Armenian journal of physics}, number = {4}, publisher = {National Academy of Sciences of Armenia}, address = {Yerevan}, issn = {1829-1171}, pages = {177 -- 187}, year = {2013}, language = {en} } @article{PoghossianWeilCherstvyetal.2013, author = {Poghossian, Arshak and Weil, M. and Cherstvy, A. G. and Sch{\"o}ning, Michael Josef}, title = {Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices}, series = {Analytical and bioanalytical chemistry}, volume = {405}, journal = {Analytical and bioanalytical chemistry}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1432-1130 ; 1618-2642}, doi = {10.1007/s00216-013-6951-9}, pages = {6425 -- 6436}, year = {2013}, abstract = {The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance-voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed.}, language = {en} } @article{HuckSchiffelsHerreraetal.2013, author = {Huck, Christina and Schiffels, Johannes and Herrera, Cony N. and Schelden, Maximilian and Selmer, Thorsten and Poghossian, Arshak and Baumann, Marcus and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201200900}, pages = {926 -- 931}, year = {2013}, abstract = {Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the "welfare" of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis-Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed.}, language = {en} } @article{BaeckerRakowskiPoghossianetal.2013, author = {B{\"a}cker, Matthias and Rakowski, D. and Poghossian, Arshak and Biselli, Manfred and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis}, series = {Journal of Biotechnology}, volume = {163}, journal = {Journal of Biotechnology}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2012.03.014}, pages = {371 -- 376}, year = {2013}, abstract = {A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The sensors have been characterized in terms of sensitivity, linear working range and detection limit. The sensitivity evaluated from the respective peak areas was 1.47, 3.68 and 0.28 μAs/mM for the glucose, glutamate and glutamine sensor, respectively. The calibration curves were linear up to a concentration of 20 mM glucose and glutamine and up to 10 mM for glutamate. The lower detection limit amounted to be 0.05 mM for the glucose and glutamate sensor, respectively, and 0.1 mM for the glutamine sensor. Experiments in cell-culture medium have demonstrated a good correlation between the glutamate, glutamine and glucose concentrations measured with the chip-based biosensors in a differential-mode and the commercially available instrumentation. The obtained results demonstrate the feasibility of the realized microfluidic biosensor chip for monitoring of bioprocesses.}, language = {en} } @article{SchusserLeinhosBaeckeretal.2013, author = {Schusser, Sebastian and Leinhos, Marcel and B{\"a}cker, Matthias and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Impedance spectroscopy: A tool for real-time in situ monitoring of the degradation of biopolymers}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-396X ; 0031-8965}, doi = {10.1002/pssa.201200941}, pages = {905 -- 910}, year = {2013}, abstract = {Investigation of the degradation kinetics of biodegradable polymers is essential for the development of implantable biomedical devices with predicted biodegradability. In this work, an impedimetric sensor has been applied for real-time and in situ monitoring of degradation processes of biopolymers. The sensor consists of two platinum thin-film electrodes covered by a polymer film to be studied. The benchmark biomedical polymer poly(D,L-lactic acid) (PDLLA) was used as a model system. PDLLA films were deposited on the sensor structure from a polymer solution by using the spin-coating method. The degradation kinetics of PDLLA films have been studied in alkaline solutions of pH 9 and 12 by means of an impedance spectroscopy (IS) method. Any changes in a polymer capacitance/resistance induced by water uptake and/or polymer degradation will modulate the global impedance of the polymer-covered sensor that can be used as an indicator of the polymer degradation. The degradation rate can be evaluated from the time-dependent impedance spectra. As expected, a faster degradation has been observed for PDLLA films exposed to pH 12 solution.}, language = {en} } @inproceedings{PoghossianAbouzarSchoening2012, author = {Poghossian, Arshak and Abouzar, Maryam H. and Sch{\"o}ning, Michael Josef}, title = {(Bio-­)chemical sensor array based on nanoplate SOI capacitors}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {31 -- 31}, year = {2012}, language = {en} } @inproceedings{SchusserLeinhosPoghossianetal.2012, author = {Schusser, Sebastian and Leinhos, Marcel and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Biopolymer-degradation monitoring by chip-­based impedance spectroscopy technique}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {47 -- 47}, year = {2012}, language = {en} } @article{AbouzarPoghossianCherstvyetal.2012, author = {Abouzar, Maryam H. and Poghossian, Arshak and Cherstvy, Andrey G. and Pedraza, Angela M. and Ingebrandt, Sven and Sch{\"o}ning, Michael Josef}, title = {Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100710}, pages = {925 -- 934}, year = {2012}, abstract = {Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface.}, language = {en} } @article{BaeckerRaueSchusseretal.2012, author = {B{\"a}cker, Matthias and Raue, Markus and Schusser, Sebastian and Jeitner, C. and Breuer, L. and Wagner, P. and Poghossian, Arshak and F{\"o}rster, Arnold and Mang, Thomas and Sch{\"o}ning, Michael Josef}, title = {Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100763}, pages = {839 -- 845}, year = {2012}, abstract = {Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3-12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off.}, language = {en} } @article{SchusserPoghossianBaeckeretal.2012, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Leinhos, Marcel and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Characterization of biodegradable polymers with capacitive field-effect sensors}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.07.099}, pages = {2 -- 7}, year = {2012}, abstract = {In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta₂O₅-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance-voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor.}, language = {en} } @article{PoghossianWeilBaeckeretal.2012, author = {Poghossian, Arshak and Weil, M. H. and B{\"a}cker, Matthias and Mayer, D. and Sch{\"o}ning, Michael Josef}, title = {Field-effect Devices Functionalised with Gold-Nanoparticle/Macromolecule Hybrids: New Opportunities for a Label-Free Biosensing}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.136}, pages = {273 -- 276}, year = {2012}, abstract = {Field-effect capacitive electrolyte-insulator-semiconductor (EIS) sensors functionalised with citrate-capped gold nanoparticles (AuNP) have been used for the electrostatic detection of macromolecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in the AuNP/macromolecule hybrids induced by the adsorption or binding events. A feasibility of the proposed detection scheme has been exemplary demonstrated by realising EIS sensors for the detection of poly-D-lysine molecules.}, language = {en} } @article{HuckPoghossianWagneretal.2012, author = {Huck, Christina and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Combined amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.10.050}, pages = {168 -- 173}, year = {2012}, abstract = {Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3\% (v/v) with a slope of 198.4 ± 13.7 nA/\% (v/v) and 14.9 ± 0.5 mV/\% (v/v), respectively.}, language = {en} } @article{SchoeningBiselliSelmeretal.2012, author = {Sch{\"o}ning, Michael Josef and Biselli, Manfred and Selmer, Thorsten and {\"O}hlschl{\"a}ger, Peter and Baumann, Marcus and F{\"o}rster, Arnold and Poghossian, Arshak}, title = {Forschung „zwischen" den Disziplinen: das Institut f{\"u}r Nano- und Biotechnologien}, series = {Analytik news : das Online-Labormagazin f{\"u}r Labor und Analytik}, volume = {Publ. online}, journal = {Analytik news : das Online-Labormagazin f{\"u}r Labor und Analytik}, publisher = {Dr. Beyer Internet-Beratung}, address = {Ober-Ramstadt}, pages = {11 Seiten}, year = {2012}, abstract = {"Biologie trifft Mikroelektronik", das Motto des Instituts f{\"u}r Nano- und Biotechnologien (INB) an der FH Aachen, unterstreicht die zunehmende Bedeutung interdisziplin{\"a}r gepr{\"a}gter Forschungsaktivit{\"a}ten. Der thematische Zusammenschluss grundst{\"a}ndiger Disziplinen, wie die Physik, Elektrotechnik, Chemie, Biologie sowie die Materialwissenschaften, l{\"a}sst neue Forschungsgebiete entstehen, ein herausragendes Beispiel hierf{\"u}r ist die Nanotechnologie: Hier werden neue Werkstoffe und Materialien entwickelt, einzelne Nanopartikel oder Molek{\"u}le und deren Wechselwirkung untersucht oder Schichtstrukturen im Nanometerbereich aufgebaut, die neue und vorher nicht bekannte Eigenschaften hervorbringen. Vor diesem Hintergrund b{\"u}ndelt das im Jahre 2006 gegr{\"u}ndete INB die an der FH Aachen vorhandenen Kompetenzen von derzeit insgesamt sieben Laboratorien auf den Gebieten der Halbleitertechnik und Nanoelektronik, Nanostrukturen und DNA-Sensorik, der Chemo- und Biosensorik, der Enzymtechnologie, der Mikrobiologie und Pflanzenbiotechnologie, der Zellkulturtechnik, sowie der Roten Biotechnologie synergetisch. In der Nano- und Biotechnologie steckt außergew{\"o}hnliches Potenzial! Nicht zuletzt deshalb stellen sich die Forscher der Herausforderung, in diesem Bereich gemeinsam zu forschen und Schnittstellen zu nutzen, um so bei der Gestaltung neuartiger Ideen und Produkte mitzuwirken, die zuk{\"u}nftig unser allt{\"a}gliches Leben ver{\"a}ndern werden. Im Folgenden werden die verschiedenen Forschungsbereiche kurz zusammenfassend vorgestellt und vorhandene Interaktionen anhand von exemplarisch ausgew{\"a}hlten, aktuellen Forschungsprojekten skizziert.}, language = {de} } @inproceedings{WeilPoghossianSchoeningetal.2012, author = {Weil, M. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Cherstvy, A.}, title = {Electrical monitoring of layer-by-layer adsorption of oppositely charged macromolecules by means of capacitive field-effect devices}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/P2.5.2}, pages = {1575 -- 1578}, year = {2012}, language = {en} } @article{AbouzarPoghossianPedrazaetal.2011, author = {Abouzar, Maryam H. and Poghossian, Arshak and Pedraza, A. M. and Gandhi, D. and Ingebrandt, S. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing}, series = {Biosensors and Bioelectronics. 26 (2011), H. 6}, journal = {Biosensors and Bioelectronics. 26 (2011), H. 6}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {3023 -- 3028}, year = {2011}, language = {en} } @article{GunGutkinLevetal.2011, author = {Gun, Jenny and Gutkin, Vitaly and Lev, Ovadia and Boyen, Hans-Gerd and Saitner, Marc and Wagner, Patrick and Olieslaeger, Marc D´ and Abouzar, Maryam H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices}, series = {Journal of Physical Chemistry C. 115 (2011), H. 11}, journal = {Journal of Physical Chemistry C. 115 (2011), H. 11}, publisher = {American Cemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {4439 -- 4445}, year = {2011}, language = {en} } @article{BaeckerPouyeshmanSchnitzleretal.2011, author = {B{\"a}cker, Matthias and Pouyeshman, S. and Schnitzler, Thomas and Poghossian, Arshak and Wagner, Patrick and Biselli, Manfred and Sch{\"o}ning, Michael Josef}, title = {A silicon-based multi-sensor chip for monitoring of fermentation processes}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1364 -- 1369}, year = {2011}, language = {en} } @article{AbouzarWernerSchoeningetal.2011, author = {Abouzar, Maryam H. and Werner, Moritz and Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Capacitance-voltage and impedance-spectroscopy characteristics of nanoplate EISOI capacitors}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley-VCH}, address = {Berlin}, isbn = {1862-6319}, pages = {1327 -- 1332}, year = {2011}, language = {en} } @article{PoghossianWagnerSchoening2011, author = {Poghossian, Arshak and Wagner, Holger and Sch{\"o}ning, Michael Josef}, title = {Functional testing and characterisation of (bio-)chemical sensors on wafer level}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {169 -- 173}, year = {2011}, language = {en} } @article{GasparyanPoghossianVitusevichetal.2011, author = {Gasparyan, Ferdinand V. and Poghossian, Arshak and Vitusevich, Svetlana A. and Petrychuk, Mykhaylo V. and Sydoruk, Viktor A. and Siqueira, Jos{\´e} R. Jr. and Oliveira, Osvaldo N. Jr. and Offenh{\"a}usser, Andreas and Sch{\"o}ning, Michael Josef}, title = {Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers}, series = {IEEE Sensors Journal. 11 (2011), H. 1}, journal = {IEEE Sensors Journal. 11 (2011), H. 1}, publisher = {IEEE}, address = {New York}, isbn = {1530-437X}, pages = {142 -- 149}, year = {2011}, language = {en} }