@inproceedings{HeuermannFinger2014, author = {Heuermann, Holger and Finger, Torsten}, title = {2.45 GHz Plasma Powered Spark Plug by Thermal and EM-Optimization}, pages = {30 Folien}, year = {2014}, language = {en} } @inproceedings{OegunKlingHeuermannetal.2014, author = {{\"O}gun, Celal Mohan and Kling, Rainer and Heuermann, Holger and Gr{\"a}ser, Ulrich and Schopp, Christoph}, title = {Elektrodenlose quecksilberfreie Niederdrucklampen betrieben mit Mikrowellen}, series = {Licht 2014 [Elektronische Ressource] : Den Haag, Holland ; 21. Gemeinschaftstagung, 21. bis 24. September 2014 ; Tagungsband}, booktitle = {Licht 2014 [Elektronische Ressource] : Den Haag, Holland ; 21. Gemeinschaftstagung, 21. bis 24. September 2014 ; Tagungsband}, publisher = {Nederlandse Stichting voor Verlichtingskunde}, address = {Ede}, pages = {[Elektronische Ressource]}, year = {2014}, language = {de} } @book{Heuermann2014, author = {Heuermann, Holger}, title = {Mikrowellentechnik}, edition = {4. Aufl.}, pages = {[Elektronische Ressource] IX, 225 S. ; graph. Darst.}, year = {2014}, language = {de} } @incollection{HeuermannFinger2014, author = {Heuermann, Holger and Finger, Torsten}, title = {Microwave Spark Plug for Very High-Pressure Conditions}, series = {Ignition systems for gasoline engines}, booktitle = {Ignition systems for gasoline engines}, editor = {G{\"u}nther, Michael}, publisher = {DCM Druck}, address = {Meckenheim}, pages = {269 -- 282}, year = {2014}, language = {en} } @inproceedings{SchoppHeuermannHoltrup2014, author = {Schopp, Christoph and Heuermann, Holger and Holtrup, S.}, title = {Investigation on efficacy optimization of RF-driven automotive D-lamps}, series = {44th European Microwave Conference (EuMC),2014, Rome}, booktitle = {44th European Microwave Conference (EuMC),2014, Rome}, doi = {10.1109/EuMC.2014.6986645}, pages = {1154 -- 1157}, year = {2014}, language = {en} } @article{HoltrupSadeghfamHeuermannetal.2014, author = {Holtrup, S. and Sadeghfam, Arash and Heuermann, Holger and Awakowicz, P.}, title = {Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters}, series = {IEEE transactions on microwave theories and techniques}, volume = {62}, journal = {IEEE transactions on microwave theories and techniques}, number = {10}, publisher = {IEEE}, address = {New York}, issn = {0018-9480}, doi = {10.1109/TMTT.2014.2342652}, pages = {2471 -- 2480}, year = {2014}, abstract = {High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation.}, language = {en} }