@article{CheenakulaGriebelMontagetal.2023, author = {Cheenakula, Dheeraja and Griebel, Kai and Montag, David and Gr{\"o}mping, Markus}, title = {Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, number = {11155235}, editor = {Huang, Xiaowu}, publisher = {Frontiers}, issn = {1664-302X}, doi = {10.3389/fmicb.2023.1155235}, pages = {1 -- 15}, year = {2023}, abstract = {Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80\% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.}, language = {en} } @article{CheenakulaPaulsenOttetal.2023, author = {Cheenakula, Dheeraja and Paulsen, Svea and Ott, Fabian and Gr{\"o}mping, Markus}, title = {Operational window of a deammonifying sludge for mainstream application in a municipal wastewater treatment plant}, series = {Water and Environment Journal}, journal = {Water and Environment Journal}, number = {Early View}, publisher = {Wiley}, address = {Chichester}, issn = {1747-6593}, doi = {10.1111/wej.12898}, pages = {1 -- 12}, year = {2023}, abstract = {The present work aimed to study the mainstream feasibility of the deammonifying sludge of side stream of municipal wastewater treatment plant (MWWTP) in Kaster, Germany. For this purpose, the deammonifying sludge available at the side stream was investigated for nitrogen (N) removal with respect to the operational factors temperature (15-30°C), pH value (6.0-8.0) and chemical oxygen demand (COD)/N ratio (≤1.5-6.0). The highest and lowest N-removal rates of 0.13 and 0.045 kg/(m³ d) are achieved at 30 and 15°C, respectively. Different conditions of pH and COD/N ratios in the SBRs of Partial nitritation/anammox (PN/A) significantly influenced both the metabolic processes and associated N-removal rates. The scientific insights gained from the current work signifies the possibility of mainstream PN/A at WWTPs. The current study forms a solid basis of operational window for the upcoming semi-technical trails to be conducted prior to the full-scale mainstream PN/A at WWTP Kaster and WWTPs globally.}, language = {en} } @article{CheenakulaHoffstadtKrafftetal.2022, author = {Cheenakula, Dheeraja and Hoffstadt, Kevin and Krafft, Simone and Reinecke, Diana and Klose, Holger and Kuperjans, Isabel and Gr{\"o}mping, Markus}, title = {Anaerobic digestion of algal-bacterial biomass of an Algal Turf Scrubber system}, series = {Biomass Conversion and Biorefinery}, volume = {13}, journal = {Biomass Conversion and Biorefinery}, publisher = {Springer}, address = {Berlin}, issn = {2190-6823}, doi = {10.1007/s13399-022-03236-z}, pages = {15 Seiten}, year = {2022}, abstract = {This study investigated the anaerobic digestion of an algal-bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal-bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4\%) and a mixture of manure and maize silage (107.4\%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6\%) and percolated green waste (43.5\%) inocula. To further evaluate the potential of algal-bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7-12.5 MWh a-1) can be gained through the addition of algal-bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies.}, language = {en} } @article{ValeroBungErpicumetal.2022, author = {Valero, Daniel and Bung, Daniel B. and Erpicum, Sebastien and Peltier, Yann and Dewals, Benjamin}, title = {Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling}, series = {Journal of Hydro-environment Research}, journal = {Journal of Hydro-environment Research}, number = {In Press}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2022.03.002}, year = {2022}, abstract = {Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).}, language = {en} } @article{vonHaefenKrautwaldStolleetal.2022, author = {von H{\"a}fen, Hajo and Krautwald, Clemens and Stolle, Jacob and Bung, Daniel Bernhard and Goseberg, Nils}, title = {Overland flow of broken solitary waves over a two-dimensional coastal plane}, series = {Coastal Engineering}, volume = {175}, journal = {Coastal Engineering}, number = {August}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7379}, doi = {10.1016/j.coastaleng.2022.104125}, pages = {14 Seiten}, year = {2022}, abstract = {Landslides, rock falls or related subaerial and subaqueous mass slides can generate devastating impulse waves in adjacent waterbodies. Such waves can occur in lakes and fjords, or due to glacier calving in bays or at steep ocean coastlines. Infrastructure and residential houses along coastlines of those waterbodies are often situated on low elevation terrain, and are potentially at risk from inundation. Impulse waves, running up a uniform slope and generating an overland flow over an initially dry adjacent horizontal plane, represent a frequently found scenario, which needs to be better understood for disaster planning and mitigation. This study presents a novel set of large-scale flume test focusing on solitary waves propagating over a 1:14.5 slope and breaking onto a horizontal section. Examining the characteristics of overland flow, this study gives, for the first time, insight into the fundamental process of overland flow of a broken solitary wave: its shape and celerity, as well as its momentum when wave breaking has taken place beforehand.}, language = {en} } @inproceedings{BlankeSchmidtGoettscheetal.2022, author = {Blanke, Tobias and Schmidt, Katharina S. and G{\"o}ttsche, Joachim and D{\"o}ring, Bernd and Frisch, J{\´e}r{\^o}me and van Treeck, Christoph}, title = {Time series aggregation for energy system design: review and extension of modelling seasonal storages}, series = {Energy Informatics}, volume = {5}, booktitle = {Energy Informatics}, number = {1, Article number: 17}, editor = {Weidlich, Anke and Neumann, Dirk and Gust, Gunther and Staudt, Philipp and Sch{\"a}fer, Mirko}, publisher = {Springer Nature}, issn = {2520-8942}, doi = {10.1186/s42162-022-00208-5}, pages = {1 -- 14}, year = {2022}, abstract = {Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, "Time series aggregation for energy system design: Modeling seasonal storage", has developed a seasonal storage model to address this issue. Simultaneously, the paper "Optimal design of multi-energy systems with seasonal storage" has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results.}, language = {en} } @article{BlankeHagenkampDoeringetal.2021, author = {Blanke, Tobias and Hagenkamp, Markus and D{\"o}ring, Bernd and G{\"o}ttsche, Joachim and Reger, Vitali and Kuhnhenne, Markus}, title = {Net-exergetic, hydraulic and thermal optimization of coaxial heat exchangers using fixed flow conditions instead of fixed flow rates}, series = {Geothermal Energy}, volume = {9}, journal = {Geothermal Energy}, number = {Article number: 19}, publisher = {Springer}, address = {Berlin}, issn = {2195-9706}, doi = {10.1186/s40517-021-00201-3}, pages = {23 Seiten}, year = {2021}, abstract = {Previous studies optimized the dimensions of coaxial heat exchangers using constant mass fow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar fow types. In contrast, in this study, fow conditions in the circular ring are kept constant (a set of fxed Reynolds numbers) during optimization. This approach ensures fxed fow conditions and prevents inappropriately high or low mass fow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic efort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass fow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellstr{\"o}m's borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefcients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy diference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy fux and hydraulic efort. The Reynolds number in the circular ring is instead of the mass fow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54\% of the outer pipe radius for laminar fow and 60\% for turbulent fow scenarios. Net-exergetic optimization shows a predominant infuence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth's thermal properties and the fow type. Conclusively, coaxial geothermal probes' design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.}, language = {en} } @inproceedings{MerkensHebel2021, author = {Merkens, Torsten and Hebel, Christoph}, title = {Sharing mobility concepts - flexible, sustainable, smart}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG)}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG)}, isbn = {978-3-902103-94-9}, pages = {43 -- 44}, year = {2021}, language = {en} } @article{HagenkampBlankeDoering2021, author = {Hagenkamp, Markus and Blanke, Tobias and D{\"o}ring, Bernd}, title = {Thermoelectric building temperature control: a potential assessment}, series = {International Journal of Energy and Environmental Engineering}, volume = {13}, journal = {International Journal of Energy and Environmental Engineering}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s40095-021-00424-x}, pages = {241 -- 254}, year = {2021}, abstract = {This study focuses on thermoelectric elements (TEE) as an alternative for room temperature control. TEE are semi-conductor devices that can provide heating and cooling via a heat pump effect without direct noise emissions and no refrigerant use. An efficiency evaluation of the optimal operating mode is carried out for different numbers of TEE, ambient temperatures, and heating loads. The influence of an additional heat recovery unit on system efficiency and an unevenly distributed heating demand are examined. The results show that TEE can provide heat at a coefficient of performance (COP) greater than one especially for small heating demands and high ambient temperatures. The efficiency increases with the number of elements in the system and is subject to economies of scale. The best COP exceeds six at optimal operating conditions. An additional heat recovery unit proves beneficial for low ambient temperatures and systems with few TEE. It makes COPs above one possible at ambient temperatures below 0 ∘C. The effect increases efficiency by maximal 0.81 (from 1.90 to 2.71) at ambient temperature 5 K below room temperature and heating demand Q˙h=100W but is subject to diseconomies of scale. Thermoelectric technology is a valuable option for electricity-based heat supply and can provide cooling and ventilation functions. A careful system design as well as an additional heat recovery unit significantly benefits the performance. This makes TEE superior to direct current heating systems and competitive to heat pumps for small scale applications with focus on avoiding noise and harmful refrigerants.}, language = {en} } @article{ErpicumCrookstonBombardellietal.2021, author = {Erpicum, Sebastien and Crookston, Brian M. and Bombardelli, Fabian and Bung, Daniel B. and Felder, Stefan and Mulligan, Sean and Oertel, Mario and Palermo, Michele}, title = {Hydraulic structures engineering: An evolving science in a changing world}, series = {Wires Water}, volume = {8}, journal = {Wires Water}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {2049-1948}, doi = {10.1002/wat2.1505}, year = {2021}, language = {en} } @article{ValeroSchalkoFriedrichetal.2021, author = {Valero, Daniel and Schalko, Isabella and Friedrich, Heide and Abad, Jorge D. and Bung, Daniel B. and Donchyts, Gennadii and Felder, Stefan and Ferreira, Rui M. L. and Hohermuth, Benjamin and Kramer, Matthias and Li, Danxun and Mendes, Luis and Moreno-Rodenas, Antonio and Nones, Michael and Paron, Paolo and Ruiz-Villanueva, Virginia and Wang, Ruo-Qian and Franca, Mario J.}, title = {Pathways towards democratization of hydro-environment observations and data}, series = {Iahr White Paper Series}, journal = {Iahr White Paper Series}, number = {1}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, pages = {1 -- 9}, year = {2021}, language = {en} } @inproceedings{SchulzeBuxlohGross2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz}, title = {Miniature urban farming plant: a complex educational "Toy" for engineering students}, series = {The Future of Education 11th Edition 2021}, booktitle = {The Future of Education 11th Edition 2021}, pages = {4 Seiten}, year = {2021}, abstract = {Urban farming is an innovative and sustainable way of food production and is becoming more and more important in smart city and quarter concepts. It also enables the production of certain foods in places where they usually dare not produced, such as production of fish or shrimps in large cities far away from the coast. Unfortunately, it is not always possible to show students such concepts and systems in real life as part of courses: visits of such industry plants are sometimes not possible because of distance or are permitted by the operator for hygienic reasons. In order to give the students the opportunity of getting into contact with such an urban farming system and its complex operation, an industrial urban farming plant was set up on a significantly smaller scale. Therefore, all needed technical components like water aeriation, biological and mechanical filtration or water circulation have been replaced either by aquarium components or by self-designed parts also using a 3D-printer. Students from different courses like mechanical engineering, smart building engineering, biology, electrical engineering, automation technology and civil engineering were involved in this project. This "miniature industrial plant" was also able to start operation and has now been running for two years successfully. Due to Corona pandemic, home office and remote online lectures, the automation of this miniature plant should be brought to a higher level in future for providing a good control over the system and water quality remotely. The aim of giving the student a chance to get to know the operation of an urban farming plant was very well achieved and the students had lots of fun in "playing" and learning with it in a realistic way.}, language = {en} } @inproceedings{MohanGrossMenzeletal.2021, author = {Mohan, Nijanthan and Groß, Rolf Fritz and Menzel, Karsten and Theis, Fabian}, title = {Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany - A Case Study}, series = {WIT Transactions on The Built Environment, Vol. 205}, booktitle = {WIT Transactions on The Built Environment, Vol. 205}, publisher = {WIT Press}, address = {Southampton}, issn = {1743-3509}, doi = {10.2495/BIM210101}, pages = {117 -- 126}, year = {2021}, abstract = {FEven though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.}, language = {en} } @inproceedings{SchulzeBuxlohGross2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz}, title = {Interdisciplinary Course Smart Building Engineering: A new approach of teaching freshmen in remote teamwork project under pandemic restrictions}, series = {New Perspectives in Science Education -International Conference (virtual event, 18-19 March 2021)}, booktitle = {New Perspectives in Science Education -International Conference (virtual event, 18-19 March 2021)}, publisher = {Filodiritto}, address = {Bologna}, pages = {4 Seiten}, year = {2021}, abstract = {In the context of the Corona pandemic and its impact on teaching like digital lectures and exercises a new concept especially for freshmen in demanding courses of Smart Building Engineering became necessary. As there were hardly any face-to-face events at the university, the new teaching concept should enable a good start into engineering studies under pandemic conditions anyway and should also replace the written exam at the end. The students should become active themselves in small teams instead of listening passively to a lecture broadcast online with almost no personal contact. For this purpose, a role play was developed in which the freshmen had to work out a complete solution to the realistic problem of designing, construction planning and implementing a small guesthouse. Each student of the team had to take a certain role like architect, site manager, BIM-manager, electrician and the technitian for HVAC installations. Technical specifications must be complied with, as well as documentation, time planning and cost estimate. The final project folder had to contain technical documents like circuit diagrams for electrical components, circuit diagrams for water and heating, design calculations and components lists. On the other hand construction schedule, construction implementation plan, documentation of the construction progress and minutes of meetings between the various trades had to be submitted as well. In addition to the project folder, a model of the construction project must also be created either as a handmade model or as a digital 3D-model using Computer-aided design (CAD) software. The first steps in the field of Building information modelling (BIM) had also been taken by creating a digital model of the building showing the current planning status in real time as a digital twin. This project turned out to be an excellent training of important student competencies like teamwork, communication skills, and self -organisation and also increased motivation to work on complex technical questions. The aim of giving the student a first impression on the challenges and solutions in building projects with many different technical trades and their points of view was very well achieved and should be continued in the future.}, language = {en} } @inproceedings{SchulzeBuxlohGrossUlbrich2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz and Ulbrich, Michelle}, title = {Digital planning using building information modelling and virtual reality: new approach for students' remote practical training under lockdown conditions in the course of smart building engineering}, series = {Proceedings of International Conference on Education in Mathematics, Science and Technology 2021}, booktitle = {Proceedings of International Conference on Education in Mathematics, Science and Technology 2021}, publisher = {ISTES Organization}, address = {San Antonio, TX}, isbn = {978-1-952092-17-6}, pages = {118 -- 123}, year = {2021}, abstract = {The worldwide Corona pandemic has severely restricted student projects in the higher semesters of engineering courses. In order not to delay the graduation, a new concept had to be developed for projects under lockdown conditions. Therefore, unused rooms at the university should be digitally recorded in order to develop a new usage concept as laboratory rooms. An inventory of the actual state of the rooms was done first by taking photos and listing up all flaws and peculiarities. After that, a digital site measuring was done with a 360° laser scanner and these recorded scans were linked to a coherent point cloud and transferred to a software for planning technical building services and supporting Building Information Modelling (BIM). In order to better illustrate the difference between the actual and target state, two virtual reality models were created for realistic demonstration. During the project, the students had to go through the entire digital planning phases. Technical specifications had to be complied with, as well as documentation, time planning and cost estimate. This project turned out to be an excellent alternative to on-site practical training under lockdown conditions and increased the students' motivation to deal with complex technical questions.}, language = {en} } @article{ValeroChansonBung2020, author = {Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Robust estimators for free surface turbulence characterization: A stepped spillway application}, series = {Flow Measurement and Instrumentation}, volume = {76}, journal = {Flow Measurement and Instrumentation}, number = {Art. 101809}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-5986}, doi = {10.1016/j.flowmeasinst.2020.101809}, year = {2020}, abstract = {Robust estimators are parameters insensitive to the presence of outliers. However, they presume the shape of the variables' probability density function. This study exemplifies the sensitivity of turbulent quantities to the use of classic and robust estimators and the presence of outliers in turbulent flow depth time series. A wide range of turbulence quantities was analysed based upon a stepped spillway case study, using flow depths sampled with Acoustic Displacement Meters as the flow variable of interest. The studied parameters include: the expected free surface level, the expected fluctuation intensity, the depth skewness, the autocorrelation timescales, the vertical velocity fluctuation intensity, the perturbations celerity and the one-dimensional free surface turbulence spectrum. Three levels of filtering were utilised prior to applying classic and robust estimators, showing that comparable robustness can be obtained either using classic estimators together with an intermediate filtering technique or using robust estimators instead, without any filtering technique.}, language = {en} } @article{KuhnhenneRegerPyschnyetal.2020, author = {Kuhnhenne, Markus and Reger, Vitali and Pyschny, Dominik and D{\"o}ring, Bernd}, title = {Influence of airtightness of steel sandwich panel joints on heat losses}, series = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, volume = {172}, journal = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, number = {Art. 05008}, publisher = {EDP Sciences}, address = {Les Ulis}, doi = {10.1051/e3sconf/202017205008}, pages = {6}, year = {2020}, abstract = {Energy saving ordinances requires that buildings must be designed in such a way that the heat transfer surface including the joints is permanently air impermeable. The prefabricated roof and wall panels in lightweight steel constructions are airtight in the area of the steel covering layers. The sealing of the panel joints contributes to fulfil the comprehensive requirements for an airtight building envelope. To improve the airtightness of steel sandwich panels, additional sealing tapes can be installed in the panel joint. The influence of these sealing tapes was evaluated by measurements carried out by the RWTH Aachen University - Sustainable Metal Building Envelopes. Different installation situations were evaluated by carrying out airtightness tests for different joint distances. In addition, the influence on the heat transfer coefficient was also evaluated using the Finite Element Method (FEM). The combination of obtained air volume flow and transmission losses enables to create an "effective heat transfer coefficient" due to transmission and infiltration. This summarizes both effects in one value and is particularly helpful for approximate calculations on energy efficiency.}, language = {en} } @article{KerresGredigkHoffmannJatheetal.2020, author = {Kerres, Karsten and Gredigk-Hoffmann, Sylvia and Jathe, R{\"u}diger and Orlik, Stefan and Sariyildiz, Mustafa and Schmidt, Torsten and Sympher, Klaus-Jochen and Uhlenbroch, Adrian}, title = {Future approaches for sewer system condition assessment}, series = {Water Practice \& Technology}, journal = {Water Practice \& Technology}, number = {15 (2)}, publisher = {IWA Publishing}, address = {London}, issn = {1751-231X}, doi = {10.2166/wpt.2020.027}, pages = {386 -- 393}, year = {2020}, abstract = {Different analytical approaches exist to describe the structural substance or wear reserve of sewer systems. The aim is to convert engineering assessments of often complex defect patterns into computational algorithms and determine a substance class for a sewer section or manhole. This analytically determined information is essential for strategic rehabilitation planning processes up to network level, as it corresponds to the most appropriate rehabilitation type and can thus provide decision-making support. Current calculation methods differ clearly from each other in parts, so that substance classes determined by the different approaches are only partially comparable with each other. The objective of the German R\&D cooperation project 'SubKanS' is to develop a methodology for classifying the specific defect patterns resulting from the interaction of all the individual defects, and their severities and locations. The methodology takes into account the structural substance of sewer sections and manholes, based on real data and theoretical considerations analogous to the condition classification of individual defects. The result is a catalogue of defect patterns and characteristics, as well as associated structural substance classifications of sewer systems (substance classes). The methodology for sewer system substance classification is developed so that the classification of individual defects can be transferred into a substance class of the sewer section or manhole, eventually taking into account further information (e.g. pipe material, nominal diameter, etc.). The result is a validated methodology for automated sewer system substance classification.}, language = {en} } @article{BungCrookstonValero2020, author = {Bung, Daniel B. and Crookston, Brian M. and Valero, Daniel}, title = {Turbulent free-surface monitoring with an RGB-D sensor: the hydraulic jump case}, series = {Journal of Hydraulic Research}, journal = {Journal of Hydraulic Research}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079}, doi = {10.1080/00221686.2020.1844810}, year = {2020}, language = {en} } @article{BungErpicumTullis2020, author = {Bung, Daniel Bernhard and Erpicum, S{\´e}bastien and Tullis, Blanke P.}, title = {Advances in hydraulic structures engineering}, series = {Journal of Hydraulic Engineering}, volume = {147}, journal = {Journal of Hydraulic Engineering}, number = {1}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429 (Druckausgabe)}, doi = {10.1061/(ASCE)HY.1943-7900.0001851}, pages = {1 Seite}, year = {2020}, language = {en} }