@article{AltherrEdererLorenzetal.2014, author = {Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F. and P{\"o}ttgen, Philipp}, title = {Experimental validation of an enhanced system synthesis approach}, series = {Operations Research Proceedings 2014}, journal = {Operations Research Proceedings 2014}, editor = {L{\"u}bbecke, Marco and Koster, Arie and Letmathe, Peter and Madlener, Reihard and Peis, Britta and Walther, Grit}, publisher = {Springer}, address = {Basel}, isbn = {978-3-319-28695-2}, doi = {10.1007/978-3-319-28697-6_1}, pages = {6}, year = {2014}, abstract = {Planning the layout and operation of a technical system is a common task for an engineer. Typically, the workflow is divided into consecutive stages: First, the engineer designs the layout of the system, with the help of his experience or of heuristic methods. Secondly, he finds a control strategy which is often optimized by simulation. This usually results in a good operating of an unquestioned sys- tem topology. In contrast, we apply Operations Research (OR) methods to find a cost-optimal solution for both stages simultaneously via mixed integer program- ming (MILP). Technical Operations Research (TOR) allows one to find a provable global optimal solution within the model formulation. However, the modeling error due to the abstraction of physical reality remains unknown. We address this ubiq- uitous problem of OR methods by comparing our computational results with mea- surements in a test rig. For a practical test case we compute a topology and control strategy via MILP and verify that the objectives are met up to a deviation of 8.7\%.}, language = {en} } @inproceedings{AltherrEdererVergeetal.2015, author = {Altherr, Lena and Ederer, Thorsten and Verg{\´e}, Angela and Pelz, Peter F.}, title = {Algorithmische Struktursynthese eines hydrostatischen Getriebes}, series = {Antriebssysteme 2015 : Elektrik, Mechanik, Fluidtechnik in der Anwendung}, booktitle = {Antriebssysteme 2015 : Elektrik, Mechanik, Fluidtechnik in der Anwendung}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092268-3}, pages = {145 -- 155}, year = {2015}, language = {de} } @inproceedings{SchaenzleAltherrEdereretal.2015, author = {Sch{\"a}nzle, Christian and Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F.}, title = {As good as it can be: Ventilation system design by a combined scaling and discrete optimization method}, series = {Proceedings of FAN 2015}, booktitle = {Proceedings of FAN 2015}, pages = {1 -- 11}, year = {2015}, abstract = {The understanding that optimized components do not automatically lead to energy-efficient systems sets the attention from the single component on the entire technical system. At TU Darmstadt, a new field of research named Technical Operations Research (TOR) has its origin. It combines mathematical and technical know-how for the optimal design of technical systems. We illustrate our optimization approach in a case study for the design of a ventilation system with the ambition to minimize the energy consumption for a temporal distribution of diverse load demands. By combining scaling laws with our optimization methods we find the optimal combination of fans and show the advantage of the use of multiple fans.}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Lorenz, Ulf and Pelz, Peter F.}, title = {Examination and optimization of a heating circuit for energy-efficient buildings}, series = {Energy Technology}, volume = {4}, journal = {Energy Technology}, number = {1}, publisher = {WILEY-VCH Verlag}, address = {Weinheim}, isbn = {2194-4296}, doi = {10.1002/ente.201500252}, pages = {136 -- 144}, year = {2015}, abstract = {The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortstr{\"o}m reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings.}, language = {en} } @article{AltherrEdererPoettgenetal.2015, author = {Altherr, Lena and Ederer, Thorsten and P{\"o}ttgen, Philipp and Lorenz, Ulf and Pelz, Peter F.}, title = {Multicriterial optimization of technical systems considering multiple load and availability scenarios}, series = {Applied Mechanics and Materials}, volume = {807}, journal = {Applied Mechanics and Materials}, editor = {Pelz, Peter F. and Groche, Peter}, isbn = {1660-9336}, doi = {10.4028/www.scientific.net/AMM.807.247}, pages = {247 -- 256}, year = {2015}, abstract = {Cheap does not imply cost-effective -- this is rule number one of zeitgeisty system design. The initial investment accounts only for a small portion of the lifecycle costs of a technical system. In fluid systems, about ninety percent of the total costs are caused by other factors like power consumption and maintenance. With modern optimization methods, it is already possible to plan an optimal technical system considering multiple objectives. In this paper, we focus on an often neglected contribution to the lifecycle costs: downtime costs due to spontaneous failures. Consequently, availability becomes an issue.}, language = {en} } @incollection{AltherrEdererLorenzetal.2016, author = {Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F. and P{\"o}ttgen, Philipp}, title = {Designing a feedback control system via mixed-integer programming}, series = {Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research}, booktitle = {Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research}, editor = {L{\"u}bbecke, Marco E. and Koster, Arie and Letmathe, Peter and Madlener, Reihard and Preis, Britta and Walther, Grit}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-28695-2}, doi = {10.1007/978-3-319-28697-6_18}, pages = {121 -- 127}, year = {2016}, abstract = {Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap.}, language = {en} } @inproceedings{RauschLeiseEdereretal.2016, author = {Rausch, Lea and Leise, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem}, series = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, booktitle = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, editor = {Papadrakakis, M. and Ppadopoulos, V. and Stefanou, G. and Plevris, V.}, isbn = {978-618-82844-0-1}, pages = {8509 -- 8527}, year = {2016}, abstract = {Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art.}, language = {en} } @article{VergePoettgenAltherretal.2016, author = {Verg{\´e}, Angela and P{\"o}ttgen, Philipp and Altherr, Lena and Ederer, Thorsten and Pelz, Peter F.}, title = {Lebensdauer als Optimierungsziel: Algorithmische Struktursynthese am Beispiel eines hydrostatischen Getriebes}, series = {O+P - {\"O}lhydraulik und Pneumatik}, volume = {60}, journal = {O+P - {\"O}lhydraulik und Pneumatik}, number = {1-2}, editor = {Greuloch, Ivo and Weber, Manfred and Meier, Miles}, publisher = {Vereinigte Fachverl.}, address = {Mainz}, issn = {1614-9602}, pages = {114 -- 121}, year = {2016}, abstract = {Verf{\"u}gbarkeit und Nachhaltigkeit sind wichtige Anforderungen bei der Planung langlebiger technischer Systeme. Meist werden bei Lebensdaueroptimierungen lediglich einzelne Komponenten vordefinierter Systeme untersucht. Ob eine optimale Lebensdauer eine g{\"a}nzlich andere Systemvariante bedingt, wird nur selten hinterfragt. Technical Operations Research (TOR) erlaubt es, aus Obermengen technischer Systeme automatisiert die lebensdaueroptimale Systemstruktur auszuw{\"a}hlen. Der Artikel zeigt dies am Beispiel eines hydrostatischen Getriebes.}, language = {de} } @inproceedings{AltherrPelzEdereretal.2017, author = {Altherr, Lena and Pelz, Peter F. and Ederer, Thorsten and Pfetsch, Marc E.}, title = {Optimale Getriebe auf Knopfdruck: Gemischt-ganzzahlige nichtlineare Optimierung zur Entscheidungsunterst{\"u}tzung bei der Auslegung von Getrieben f{\"u}r Kraftfahrzeuge}, series = {Antriebstechnisches Kolloquium ATK 2017}, booktitle = {Antriebstechnisches Kolloquium ATK 2017}, editor = {Jacobs, Georg}, isbn = {9783743148970}, pages = {313 -- 325}, year = {2017}, language = {de} } @inproceedings{AltherrEdererSchaenzleetal.2017, author = {Altherr, Lena and Ederer, Thorsten and Sch{\"a}nzle, Christian and Lorenz, Ulf and Pelz, Peter F.}, title = {Algorithmic system design using scaling and affinity laws}, series = {Operations Research Proceedings 2015}, booktitle = {Operations Research Proceedings 2015}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42901-4}, doi = {10.1007/978-3-319-42902-1}, pages = {605 -- 611}, year = {2017}, abstract = {Energy-efficient components do not automatically lead to energy-efficient systems. Technical Operations Research (TOR) shifts the focus from the single component to the system as a whole and finds its optimal topology and operating strategy simultaneously. In previous works, we provided a preselected construction kit of suitable components for the algorithm. This approach may give rise to a combinatorial explosion if the preselection cannot be cut down to a reasonable number by human intuition. To reduce the number of discrete decisions, we integrate laws derived from similarity theory into the optimization model. Since the physical characteristics of a production series are similar, it can be described by affinity and scaling laws. Making use of these laws, our construction kit can be modeled more efficiently: Instead of a preselection of components, it now encompasses whole model ranges. This allows us to significantly increase the number of possible set-ups in our model. In this paper, we present how to embed this new formulation into a mixed-integer program and assess the run time via benchmarks. We present our approach on the example of a ventilation system design problem.}, language = {en} } @inproceedings{AltherrEdererFarnetaneetal.2017, author = {Altherr, Lena and Ederer, Thorsten and Farnetane, Lucas S. and P{\"o}ttgen, Philipp and Verg{\´e}, Angela and Pelz, Peter F.}, title = {Multicriterial design of a hydrostatic transmission system via mixed-integer programming}, series = {Operations Research Proceedings 2015}, booktitle = {Operations Research Proceedings 2015}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42901-4}, doi = {10.1007/978-3-319-42902-1_41}, pages = {301 -- 307}, year = {2017}, abstract = {In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system's reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system.}, language = {en} } @article{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Meck, Marvin and Pelz, Peter F.}, title = {A holistic concept to design optimal water supply infrastructures for informal settlements using remote sensing data}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, isbn = {2072-4292}, doi = {10.3390/rs10020216}, pages = {1 -- 23}, year = {2018}, abstract = {Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time) and describe how the result of the optimization depends on the entered remote sensing data.}, language = {en} } @article{AltherrEdererPfetschetal.2018, author = {Altherr, Lena and Ederer, Thorsten and Pfetsch, Marc E. and Pelz, Peter F.}, title = {Maschinelles Design eines optimalen Getriebes}, series = {ATZ - Automobiltechnische Zeitschrift}, volume = {120}, journal = {ATZ - Automobiltechnische Zeitschrift}, number = {10}, publisher = {Springer Nature}, address = {Cham}, isbn = {2192-8800}, doi = {10.1007/s35148-018-0131-3}, pages = {72 -- 77}, year = {2018}, abstract = {Nahezu 100.000 denkbare Strukturen kann ein Getriebe bei gleicher Funktion aufweisen - je nach Ganganzahl und gefordertem Freiheitsgrad. Mit dem traditionellen Ansatz bei der Entwicklung, einzelne vielversprechende Systemkonfigurationen manuell zu identifizieren und zu vergleichen, k{\"o}nnen leicht innovative und vor allem kostenminimale L{\"o}sungen {\"u}bersehen werden. Im Rahmen eines Forschungsprojekts hat die TU Darmstadt spezielle Optimierungsmethoden angewendet, um auch bei großen L{\"o}sungsr{\"a}umen zielsicher ein f{\"u}r die individuellen Zielstellungen optimales Layout zu finden.}, language = {de} } @article{SunAltherrPeietal.2018, author = {Sun, Hui and Altherr, Lena and Pei, Ji and Pelz, Peter F. and Yuan, Shouqi}, title = {Optimal booster station design and operation under uncertain load}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.102}, pages = {102 -- 115}, year = {2018}, abstract = {Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system's resilience can be engineered}, language = {en} } @incollection{MuellerAltherrAholaetal.2018, author = {M{\"u}ller, Tim M. and Altherr, Lena and Ahola, Marja and Schabel, Samuel and Pelz, Peter F.}, title = {Optimizing pressure screen systems in paper recycling: optimal system layout, component selection and operation}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-18499-5}, doi = {10.1007/978-3-030-18500-8_44}, pages = {355 -- 361}, year = {2018}, abstract = {Around 60\% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield.}, language = {en} } @incollection{StengerAltherrMuelleretal.2018, author = {Stenger, David and Altherr, Lena and M{\"u}ller, Tankred and Pelz, Peter F.}, title = {Product family design optimization using model-based engineering techniques}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_66}, pages = {495 -- 502}, year = {2018}, abstract = {Highly competitive markets paired with tremendous production volumes demand particularly cost efficient products. The usage of common parts and modules across product families can potentially reduce production costs. Yet, increasing commonality typically results in overdesign of individual products. Multi domain virtual prototyping enables designers to evaluate costs and technical feasibility of different single product designs at reasonable computational effort in early design phases. However, savings by platform commonality are hard to quantify and require detailed knowledge of e.g. the production process and the supply chain. Therefore, we present and evaluate a multi-objective metamodel-based optimization algorithm which enables designers to explore the trade-off between high commonality and cost optimal design of single products.}, language = {en} } @inproceedings{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Technical Operations Research (TOR) - Algorithms, not Engineers, Design Optimal Energy Efficient and Resilient Cooling Systems}, series = {FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems}, booktitle = {FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems}, pages = {1 -- 12}, year = {2018}, abstract = {The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example. Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP. Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs.}, language = {en} } @incollection{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Energy-Efficient design of a water supply system for skyscrapers by mixed-integer nonlinear programming}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_63}, year = {2018}, abstract = {The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design.}, language = {en} } @inproceedings{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Pelz, Peter F.}, title = {Using mixed-integer programming for the optimal design of water supply networks for slums}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, editor = {Kliewer, Natalia and Ehmke, Jan Fabian and Bornd{\"o}rfer, Ralf}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0 (Print)}, doi = {10.1007/978-3-319-89920-6_68}, pages = {509 -- 516}, year = {2018}, abstract = {The UN sets the goal to ensure access to water and sanitation for all people by 2030. To address this goal, we present a multidisciplinary approach for designing water supply networks for slums in large cities by applying mathematical optimization. The problem is modeled as a mixed-integer linear problem (MILP) aiming to find a network describing the optimal supply infrastructure. To illustrate the approach, we apply it on a small slum cluster in Dhaka, Bangladesh.}, language = {en} } @incollection{LeiseAltherrSimonetal.2019, author = {Leise, Philipp and Altherr, Lena and Simon, Nicolai and Pelz, Peter F.}, title = {Finding global-optimal gearbox designs for battery electric vehicles}, series = {Optimization of complex systems - theory, models, algorithms and applications : WCGO 2019}, booktitle = {Optimization of complex systems - theory, models, algorithms and applications : WCGO 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-21802-7}, doi = {10.1007/978-3-030-21803-4_91}, pages = {916 -- 925}, year = {2019}, abstract = {In order to maximize the possible travel distance of battery electric vehicles with one battery charge, it is mandatory to adjust all components of the powertrain carefully to each other. While current vehicle designs mostly simplify the powertrain rigorously and use an electric motor in combination with a gearbox with only one fixed transmission ratio, the use of multi-gear systems has great potential. First, a multi-speed system is able to improve the overall energy efficiency. Secondly, it is able to reduce the maximum momentum and therefore to reduce the maximum current provided by the traction battery, which results in a longer battery lifetime. In this paper, we present a systematic way to generate multi-gear gearbox designs that—combined with a certain electric motor—lead to the most efficient fulfillment of predefined load scenarios and are at the same time robust to uncertainties in the load. Therefore, we model the electric motor and the gearbox within a Mixed-Integer Nonlinear Program, and optimize the efficiency of the mechanical parts of the powertrain. By combining this mathematical optimization program with an unsupervised machine learning algorithm, we are able to derive global-optimal gearbox designs for practically relevant momentum and speed requirements.}, language = {en} }