@inproceedings{AdamsLosekammCzupalla2020, author = {Adams, Moritz and Losekamm, Martin J. and Czupalla, Markus}, title = {Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station}, series = {International Conference on Environmental Systems}, booktitle = {International Conference on Environmental Systems}, pages = {1 -- 10}, year = {2020}, language = {en} } @misc{ArtmannLinderBayeretal.2017, author = {Artmann, Gerhard and Linder, Peter and Bayer, Robin and Gossmann, Matthias}, title = {Celldrum electrode arrangement for measuring mechanical stress [Patent of invention]}, publisher = {WIPO}, address = {Geneva}, pages = {18 Seiten}, year = {2017}, abstract = {The invention pertains to a CellDrum electrode arrangement for measuring mechanical stress, comprising a mechanical holder (1 ) and a non-conductive membrane (4), whereby the membrane (4) is at least partially fixed at its circumference to the mechanical holder (1), keeping it in place when the membrane (4) may bend due to forces acting on the membrane (4), the mechanical holder (1) and the membrane (4) forming a container, whereby the membrane (1) within the container comprises an cell- membrane compound layer or biological material (3) adhered to the deformable membrane 4 which in response to stimulation by an agent may exert mechanical stress to the membrane (4) such that the membrane bending stage changes whereby the container may be filled with an electrolyte, whereby an electric contact (2) is arranged allowing to contact said electrolyte when filled into to the container, whereby within a predefined geometry to the fixing of the membrane (4) an electrode (7) is arranged, whereby the electrode (7) is electrically insulated with respect to the electric contact (2) as well as said electrolyte, whereby mechanical stress due to an agent may be measured as a change in capacitance.}, language = {en} } @article{AyedKustererFunkeetal.2016, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan}, title = {CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities}, series = {American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)}, volume = {26}, journal = {American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)}, number = {3}, publisher = {GSSRR}, issn = {2313-4402}, pages = {290 -- 303}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of Hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. Thus, the development of DLN combustion technologies is an essential and challenging task for the future of Hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel has been developed to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flash-back and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. The Micromix Combustion technology has been already proven experimentally and numerically for pure Hydrogen fuel operation at different energy density levels. The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NOx emission and to identify the most relevant design parameters, aiming to provide a physical understanding of the Micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application. The study reveals great optimization potential of the Micromix Combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the Micromix burners and to integrate this technology in industrial gas turbines.}, language = {en} } @article{AyedKustererFunkeetal.2017, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan and Bohn, D.}, title = {CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities}, series = {Propulsion and Power Research}, volume = {6}, journal = {Propulsion and Power Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2212-540X}, doi = {10.1016/j.jppr.2017.01.005}, pages = {15 -- 24}, year = {2017}, language = {en} } @inproceedings{AyedStrieganKustereretal.2017, author = {Ayed, Anis Haj and Striegan, Constantin J. D. and Kusterer, Karsten and Funke, Harald and Kazari, M. and Horikawa, Atsushi and Okada, Kunio}, title = {Automated design space exploration of the hydrogen fueled "Micromix" combustor technology}, pages = {1 -- 8}, year = {2017}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field.}, language = {en} } @article{BaaderBoxbergChenetal.2023, author = {Baader, Fabian and Boxberg, Marc S. and Chen, Qian and F{\"o}rstner, Roger and Kowalski, Julia and Dachwald, Bernd}, title = {Field-test performance of an ice-melting probe in a terrestrial analogue environment}, series = {Icarus}, journal = {Icarus}, number = {409}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.icarus.2023.115852}, pages = {Artikel 115852}, year = {2023}, abstract = {Melting probes are a proven tool for the exploration of thick ice layers and clean sampling of subglacial water on Earth. Their compact size and ease of operation also make them a key technology for the future exploration of icy moons in our Solar System, most prominently Europa and Enceladus. For both mission planning and hardware engineering, metrics such as efficiency and expected performance in terms of achievable speed, power requirements, and necessary heating power have to be known. Theoretical studies aim at describing thermal losses on the one hand, while laboratory experiments and field tests allow an empirical investigation of the true performance on the other hand. To investigate the practical value of a performance model for the operational performance in extraterrestrial environments, we first contrast measured data from terrestrial field tests on temperate and polythermal glaciers with results from basic heat loss models and a melt trajectory model. For this purpose, we propose conventions for the determination of two different efficiencies that can be applied to both measured data and models. One definition of efficiency is related to the melting head only, while the other definition considers the melting probe as a whole. We also present methods to combine several sources of heat loss for probes with a circular cross-section, and to translate the geometry of probes with a non-circular cross-section to analyse them in the same way. The models were selected in a way that minimizes the need to make assumptions about unknown parameters of the probe or the ice environment. The results indicate that currently used models do not yet reliably reproduce the performance of a probe under realistic conditions. Melting velocities and efficiencies are constantly overestimated by 15 to 50 \% in the models, but qualitatively agree with the field test data. Hence, losses are observed, that are not yet covered and quantified by the available loss models. We find that the deviation increases with decreasing ice temperature. We suspect that this mismatch is mainly due to the too restrictive idealization of the probe model and the fact that the probe was not operated in an efficiency-optimized manner during the field tests. With respect to space mission engineering, we find that performance and efficiency models must be used with caution in unknown ice environments, as various ice parameters have a significant effect on the melting process. Some of these are difficult to estimate from afar.}, language = {en} } @inproceedings{BaaderKellerLehmannetal.2019, author = {Baader, Fabian and Keller, Denis and Lehmann, Raphael and Gerber, Lukas and Reiswich, Martin and Dachwald, Bernd and F{\"o}rstner, Roger}, title = {Operating melting probes for ice penetration under sublimation conditions and in reduced gravity on a sounding rocket}, series = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, booktitle = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, issn = {0379-6566}, pages = {8 Seiten}, year = {2019}, language = {en} } @inproceedings{BaaderReiswichBartschetal.2018, author = {Baader, Fabian and Reiswich, M. and Bartsch, M. and Keller, D. and Tiede, E. and Keck, G. and Demircian, A. and Friedrich, M. and Dachwald, Bernd and Sch{\"u}ller, K. and Lehmann, R. and Chojetzki, R. and Durand, C. and Rapp, L. and Kowalski, Julia and F{\"o}rstner, R.}, title = {VIPER - Student research on extraterrestrical ice penetration technology}, series = {Proceedings of the 2nd Symposium on Space Educational Activities}, booktitle = {Proceedings of the 2nd Symposium on Space Educational Activities}, pages = {1 -- 6}, year = {2018}, abstract = {Recent analysis of scientific data from Cassini and earth-based observations gave evidence for a global ocean under a surrounding solid ice shell on Saturn's moon Enceladus. Images of Enceladus' South Pole showed several fissures in the ice shell with plumes constantly exhausting frozen water particles, building up the E-Ring, one of the outer rings of Saturn. In this southern region of Enceladus, the ice shell is considered to be as thin as 2 km, about an order of magnitude thinner than on the rest of the moon. Under the ice shell, there is a global ocean consisting of liquid water. Scientists are discussing different approaches the possibilities of taking samples of water, i.e. by melting through the ice using a melting probe. FH Aachen UAS developed a prototype of maneuverable melting probe which can navigate through the ice that has already been tested successfully in a terrestrial environment. This means no atmosphere and or ambient pressure, low ice temperatures of around 100 to 150K (near the South Pole) and a very low gravity of 0,114 m/s^2 or 1100 μg. Two of these influencing measures are about to be investigated at FH Aachen UAS in 2017, low ice temperature and low ambient pressure below the triple point of water. Low gravity cannot be easily simulated inside a large experiment chamber, though. Numerical simulations of the melting process at RWTH Aachen however are showing a gravity dependence of melting behavior. Considering this aspect, VIPER provides a link between large-scale experimental simulations at FH Aachen UAS and numerical simulations at RWTH Aachen. To analyze the melting process, about 90 seconds of experiment time in reduced gravity and low ambient pressure is provided by the REXUS rocket. In this time frame, the melting speed and contact force between ice and probes are measured, as well as heating power and a two-dimensional array of ice temperatures. Additionally, visual and infrared cameras are used to observe the melting process.}, language = {en} } @inproceedings{BagheriSchleupenDahmannetal.2015, author = {Bagheri, Mohsen and Schleupen, Josef and Dahmann, Peter and Kallweit, Stephan}, title = {A multi-functional device applying for the safe maintenance at high-altitude on wind turbines}, series = {20th International Conference on Composite Materials : Copenhagen, 19 - 24th July 2015}, booktitle = {20th International Conference on Composite Materials : Copenhagen, 19 - 24th July 2015}, organization = {International Conference on Composite Materials <20, 2015, Copenhagen>}, pages = {1 -- 6}, year = {2015}, language = {en} } @incollection{BallmannBouckeBraun2003, author = {Ballmann, Josef and Boucke, Alexander and Braun, Carsten}, title = {Aeroelastic sensitivity in the transonic regime}, series = {Symposium Transsonicum IV : proceedings of the IUTAM symposium held in G{\"o}ttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73}, booktitle = {Symposium Transsonicum IV : proceedings of the IUTAM symposium held in G{\"o}ttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73}, publisher = {Kluwer Academic}, address = {Dordrecht}, isbn = {978-94-010-3998-7}, pages = {225 -- 236}, year = {2003}, language = {en} } @inproceedings{BallmannDafnisBraunetal.2006, author = {Ballmann, Josef and Dafnis, Athanasios and Braun, Carsten and Korsch, Helge and Reimerdes, Hans-G{\"u}nther and Braun, Carsten and Ballmann, Josef}, title = {The HIRENASD project: High Reynolds number aerostructural dynamics experiments in the European Transonic Wind Tunnel (ETW)}, series = {ICAS 2006 proceedings : 25th Congress of the International Council of the Aeronautical Sciences ; Hamburg, Germany, 3 - 8 September, 2006 : 25th International Congress of Aeronautical Sciences}, booktitle = {ICAS 2006 proceedings : 25th Congress of the International Council of the Aeronautical Sciences ; Hamburg, Germany, 3 - 8 September, 2006 : 25th International Congress of Aeronautical Sciences}, publisher = {Optimage}, address = {Edinburgh}, organization = {International Council of the Aeronautical Sciences (ICAS)}, isbn = {0-9533991-7-6}, pages = {Paper No. 2006-5.11.2}, year = {2006}, language = {en} } @inproceedings{BarnatBosse2016, author = {Barnat, Miriam and Bosse, Elke}, title = {The challenge of creating meta-inferences: Combining data representing institutional and individual perspectives on first-year support in higher education}, series = {9th Conference on Social Science Methodology of the International Sociological Association, Leicester, UK}, booktitle = {9th Conference on Social Science Methodology of the International Sociological Association, Leicester, UK}, pages = {1 -- 20}, year = {2016}, language = {en} } @misc{BaumgartnerWunderlichJaunichetal.2012, author = {Baumgartner, Thomas and Wunderlich, Florian and Jaunich, Arthur and Sato, Tomoo and Bundy, Georg and Grießmann, Nadine and Kowalski, Julia and Burghardt, Stefan and Hanebrink, J{\"o}rg}, title = {Lighting the way: Perspectives on the global lighting market}, edition = {2nd ed.}, address = {McKinsey}, pages = {58}, year = {2012}, language = {en} } @phdthesis{Beckmann2019, author = {Beckmann, Nils}, title = {Characterization of the hydrogen-dry-low-Nox-micromix-combustion-principle for hydrogen-methane fuel mixtures}, publisher = {RMIT University}, address = {Melbourne}, pages = {XV, 160 Seiten}, year = {2019}, language = {en} } @book{BenkoePlescher2013, author = {Benk{\"o}, Marietta and Plescher, Engelbert}, title = {Space law: reconsidering the definition/delimitation question and the passage of spacecraft through foreign airspace. (Essential air and space law ; 12)}, publisher = {Eleven International Publishing}, address = {The Hague}, isbn = {9789462360761 ; 9462360766 ; 9789460948176}, pages = {VII, 159 S.}, year = {2013}, language = {en} } @inproceedings{BergmannGraebenerWildetal.2019, author = {Bergmann, Kevin and Gr{\"a}bener, Josefine and Wild, Dominik and Ulfers, H. and Czupalla, Markus}, title = {Study on thermal stabilization of a GEO-stationary telescope baffling system by integral application of phase change material}, series = {International Conference on Environmental Systems}, booktitle = {International Conference on Environmental Systems}, pages = {1 -- 14}, year = {2019}, abstract = {The utilization of phase change material (PCM) for latent heat storage and thermal control of spacecraft has been demonstrated in the past in few missions only. One limiting factor was the fact that all concepts developed so far envisioned the PCM to be applied as an additional capacitor, encapsulated in its own housing, leading to mass, efficiency and accommodation challenges. Recently, the application of PCM within the scan cavity of a GEOS type satellite has been suggested, in order to tackle thermal issues due to direct sun intrusion (Choi, M., 2014). However, the application of PCM in such complex mechanical structures is extremely challenging. A new concept to tackle this issue is currently under development at the FH Aachen University of Applied Sciences. The concept "Infused Thermal Solutions (ITS)" is based on the idea to 3D print metallic structures in their regular functional shape, but double walled with internal lattice support structures, allowing the infusion of a PCM layer directly into the voids and eliminating the need for additional parts and interfaces. Together with OHB System, FH Aachen theoretically studied the application of this technology to the Meteosat Third Generation (MTG) Infra-Red Sounder (IRS) instrument. The study focuses on the scan cavity and entrance baffling assembly (EBA) of the IRS. It consists of thermal analyses, 3D-redesign and bread boarding of a scaled and PCM infused EBA version. In the thermal design of the alternative EBA, PCM was applied directly into the EBA, simulating the worst hot case sun intrusion of the mission. By applying 4kg of PCM (to a 60kg baffle) the EBA temperature excursions during sun intrusion were limited from 140K to 30K, leading to a significant thermo-opto-elastic performance gain. This paper introduces the ITS concept development status.}, language = {en} } @inproceedings{BergmannGoettenBraunetal.2022, author = {Bergmann, Ole and G{\"o}tten, Falk and Braun, Carsten and Janser, Frank}, title = {Comparison and evaluation of blade element methods against RANS simulations and test data}, series = {CEAS Aeronautical Journal}, volume = {13}, booktitle = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-022-00579-1}, pages = {535 -- 557}, year = {2022}, abstract = {This paper compares several blade element theory (BET) method-based propeller simulation tools, including an evaluation against static propeller ground tests and high-fidelity Reynolds-Average Navier Stokes (RANS) simulations. Two proprietary propeller geometries for paraglider applications are analysed in static and flight conditions. The RANS simulations are validated with the static test data and used as a reference for comparing the BET in flight conditions. The comparison includes the analysis of varying 2D aerodynamic airfoil parameters and different induced velocity calculation methods. The evaluation of the BET propeller simulation tools shows the strength of the BET tools compared to RANS simulations. The RANS simulations underpredict static experimental data within 10\% relative error, while appropriate BET tools overpredict the RANS results by 15-20\% relative error. A variation in 2D aerodynamic data depicts the need for highly accurate 2D data for accurate BET results. The nonlinear BET coupled with XFOIL for the 2D aerodynamic data matches best with RANS in static operation and flight conditions. The novel BET tool PropCODE combines both approaches and offers further correction models for highly accurate static and flight condition results.}, language = {en} } @article{BergmannMoehrenBraunetal.2023, author = {Bergmann, Ole and M{\"o}hren, Felix and Braun, Carsten and Janser, Frank}, title = {On the influence of elasticity on swept propeller noise}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, doi = {10.2514/6.2023-0210}, year = {2023}, abstract = {High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation.}, language = {en} } @article{BindalSharmaJanseretal.2013, author = {Bindal, Gaurav and Sharma, Sparsh and Janser, Frank and Neu, Eugen}, title = {Detailed analysis of variables affecting wing kinematics of bat flight}, series = {SAE International Journal of Aerospace}, volume = {6}, journal = {SAE International Journal of Aerospace}, number = {2}, issn = {1946-3901}, doi = {10.4271/2013-01-9003}, pages = {811 -- 818}, year = {2013}, language = {en} } @article{Blome1994, author = {Blome, Hans-Joachim}, title = {The scale of the universe: a unit of length}, series = {Comments on astrophysics. 17 (1994)}, journal = {Comments on astrophysics. 17 (1994)}, isbn = {0146-2970}, pages = {327 -- 335}, year = {1994}, language = {en} }