@article{WerkhausenAlbrachtCroninetal.2018, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J and Paulsen, G{\o}ran and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R}, title = {Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing}, series = {Frontiers in physiology}, journal = {Frontiers in physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00794}, pages = {11 Seiten}, year = {2018}, abstract = {During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18\%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8\%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21\%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation.}, language = {en} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian and Herč{\´i}k, David and Herique, Alain and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron and Kofman, Wlodek and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and Toth, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Efficient massively parallel prospection for ISRU by multiple near-earth asteroid rendezvous using near-term solar sails and'now-term'small spacecraft solutions}, series = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, booktitle = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, pages = {1 -- 33}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is key for in-situ resource utilization (ISRU). The design of mining missions requires good understanding of SSSB properties, including composition, surface and interior structure, and thermal environment. But as the saying goes "If you've seen one asteroid, you've seen one Asteroid": Although some patterns may begin to appear, a stable and reliable scheme of SSSB classification still has to be evolved. Identified commonalities would enable generic ISRU technology and spacecraft design approaches with a high degree of re-use. Strategic approaches require much broader in-depth characterization of the SSSB populations of interest to the ISRU community. The DLR-ESTEC GOSSAMER Roadmap Science Working Groups identified target-flexible Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the missions only feasible with solar sail propulsion, showed the ability to access any inclination and a wide range of heliocentric distances as well as continuous operation close to Earth's orbit where low delta-v objects reside.}, language = {en} } @inproceedings{JeanPierrePBaqueBillietal.2018, author = {Jean-Pierre P., de Vera and Baque, Mickael and Billi, Daniela and B{\"o}ttger, Ute and Bulat, Sergey and Czupalla, Markus and Dachwald, Bernd and de la Torre, Rosa and Elsaesser, Andreas and Foucher, Fr{\´e}d{\´e}ric and Korsitzky, Hartmut and Kozyrovska, Natalia and L{\"a}ufer, Andreas and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Sommer, Stefan and Wagner, Dirk and Westall, Frances}, title = {The search for life on Mars and in the Solar System - strategies, logistics and infrastructures}, series = {69th International Astronautical Congress (IAC)}, booktitle = {69th International Astronautical Congress (IAC)}, pages = {1 -- 8}, year = {2018}, abstract = {The question "Are we alone in the Universe?" is perhaps the most fundamental one that affects mankind. How can we address the search for life in our Solar System? Mars, Enceladus and Europa are the focus of the search for life outside the terrestrial biosphere. While it is more likely to find remnants of life (fossils of extinct life) on Mars because of its past short time window of the surface habitability, it is probably more likely to find traces of extant life on the icy moons and ocean worlds of Jupiter and Saturn. Nevertheless, even on Mars there could still be a chance to find extant life in niches near to the surface or in just discovered subglacial lakes beneath the South Pole ice cap. Here, the different approaches for the detection of traces of life in the form of biosignatures including pre-biotic molecules will be presented. We will outline the required infrastructure for this enterprise and give examples of future mission concepts to investigate the presence of life on other planets and moons. Finally, we will provide suggestions on methods, techniques, operations and strategies for preparation and realization of future life detection missions.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Herč{\´i}k, David and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and T{\´o}th, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and 'Now-Term 'technologies}, series = {69 th International Astronautical Congress (IAC)}, booktitle = {69 th International Astronautical Congress (IAC)}, pages = {1 -- 18}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups' studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population.}, language = {en} } @article{ConzenAlbannaWeissetal.2018, author = {Conzen, Catharina and Albanna, Walid and Weiss, Miriam and K{\"u}rten, David and Vilser, Walthard and Kotliar, Konstantin and Z{\"a}ske, Charlotte and Clusmann, Hans and Schubert, Gerrit Alexander}, title = {Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes}, series = {Translational Stroke Research}, journal = {Translational Stroke Research}, number = {9}, publisher = {Springer Nature}, address = {Cham}, issn = {1868-601X}, doi = {10.1007/s12975-017-0585-8}, pages = {284 -- 293}, year = {2018}, abstract = {Impaired cerebral autoregulation and neurovascular coupling (NVC) contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). Retinal vessel analysis (RVA) allows non-invasive assessment of vessel dimension and NVC hereby demonstrating a predictive value in the context of various neurovascular diseases. Using RVA as a translational approach, we aimed to assess the retinal vessels in patients with SAH. RVA was performed prospectively in 24 patients with acute SAH (group A: day 5-14), in 11 patients 3 months after ictus (group B: day 90 ± 35), and in 35 age-matched healthy controls (group C). Data was acquired using a Retinal Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and NVC using flicker-light excitation. Diameter of retinal vessels—central retinal arteriolar and venular equivalent—was significantly reduced in the acute phase (p < 0.001) with gradual improvement in group B (p < 0.05). Arterial NVC of group A was significantly impaired with diminished dilatation (p < 0.001) and reduced area under the curve (p < 0.01) when compared to group C. Group B showed persistent prolonged latency of arterial dilation (p < 0.05). Venous NVC was significantly delayed after SAH compared to group C (A p < 0.001; B p < 0.05). To our knowledge, this is the first clinical study to document retinal vasoconstriction and impairment of NVC in patients with SAH. Using non-invasive RVA as a translational approach, characteristic patterns of compromise were detected for the arterial and venous compartment of the neurovascular unit in a time-dependent fashion. Recruitment will continue to facilitate a correlation analysis with clinical course and outcome.}, language = {en} } @article{DigelWehlitzKayseretal.2018, author = {Digel, Ilya and Wehlitz, V. and Kayser, Peter and Figiel-Lange, A. and Bassam, R. and Rundstedt, F. von}, title = {Suspension depletion approach for exemption of infected Solanum jasminoides cells from pospiviroids}, series = {Plant Pathology}, volume = {67}, journal = {Plant Pathology}, number = {2}, publisher = {Wiley}, address = {Oxford}, issn = {1365-3059}, doi = {10.1111/ppa.12750}, pages = {358 -- 365}, year = {2018}, abstract = {Despite numerous studies, viroid elimination from infected plants remains a very challenging task. This study introduces for the first time a novel 'suspension depletion' approach for exemption of Solanum jasminoides plants from viroids. The proposed method implies initial establishment of suspension cultures of the infected plant cells. The suspended cells were then physically treated (mild thermotherapy, 33 °C), which presumably delayed the replication of the viroid. The viroid concentration in the treated biomass was monitored weekly using pospiviroid-specific PCR. After 10-12 weeks of continuous treatment, a sufficient decrease in viroid concentration was observed such that the infection became undetectable by PCR. The treated single cells then gave rise to microcolonies on a solid culture medium and the obtained viroid-negative clones were further promoted to regenerate into viroid-free plants. Three years of accumulated experimental data suggests feasibility, broad applicability, and good efficacy of the proposed approach.}, language = {en} } @phdthesis{Bhattarai2018, author = {Bhattarai, Aroj}, title = {Constitutive modeling of female pelvic floor dysfunctions and reconstructive surgeries using prosthetic mesh implants}, isbn = {978-3-9818074-8-6}, doi = {10.17185/duepublico/70340}, pages = {192 S.}, year = {2018}, language = {en} } @inproceedings{WaldmannVeraDachwaldetal.2018, author = {Waldmann, Christoph and Vera, Jean-Pierre de and Dachwald, Bernd and Strasdeit, Henry and Sohl, Frank and Hanff, Hendrik and Kowalski, Julia and Heinen, Dirk and Macht, Sabine and Bestmann, Ulf and Meckel, Sebastian and Hildebrandt, Marc and Funke, Oliver and Gehrt, Jan-J{\"o}ran}, title = {Search for life in ice-covered oceans and lakes beyond Earth}, series = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, booktitle = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, doi = {10.1109/AUV.2018.8729761}, year = {2018}, abstract = {The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent.}, language = {en} } @inproceedings{GrundmannBauerBorchersetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Borchers, Kai and Dumont, Etienne and Grimm, Christian D. and Ho, Tra-Mi and Jahnke, Rico and Lange, Caroline and Maiwald, Volker and Mikulz, Eugen and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Sasaki, Kaname and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Toth, Norbert and Wejmo, Elisabet and Biele, Jens and Krause, Christian and Cerotti, Matteo and Peloni, Alessandro and Dachwald, Bernd}, title = {Small Spacecraft Solar Sailing for Small Solar System Body Multiple Rendezvous and Landing}, series = {2018 IEEE Aerospace Conference : 3-10 March 2018}, booktitle = {2018 IEEE Aerospace Conference : 3-10 March 2018}, isbn = {978-1-5386-2014-4}, pages = {20 Seiten}, year = {2018}, language = {en} } @inproceedings{BaaderReiswichBartschetal.2018, author = {Baader, Fabian and Reiswich, M. and Bartsch, M. and Keller, D. and Tiede, E. and Keck, G. and Demircian, A. and Friedrich, M. and Dachwald, Bernd and Sch{\"u}ller, K. and Lehmann, R. and Chojetzki, R. and Durand, C. and Rapp, L. and Kowalski, Julia and F{\"o}rstner, R.}, title = {VIPER - Student research on extraterrestrical ice penetration technology}, series = {Proceedings of the 2nd Symposium on Space Educational Activities}, booktitle = {Proceedings of the 2nd Symposium on Space Educational Activities}, pages = {1 -- 6}, year = {2018}, abstract = {Recent analysis of scientific data from Cassini and earth-based observations gave evidence for a global ocean under a surrounding solid ice shell on Saturn's moon Enceladus. Images of Enceladus' South Pole showed several fissures in the ice shell with plumes constantly exhausting frozen water particles, building up the E-Ring, one of the outer rings of Saturn. In this southern region of Enceladus, the ice shell is considered to be as thin as 2 km, about an order of magnitude thinner than on the rest of the moon. Under the ice shell, there is a global ocean consisting of liquid water. Scientists are discussing different approaches the possibilities of taking samples of water, i.e. by melting through the ice using a melting probe. FH Aachen UAS developed a prototype of maneuverable melting probe which can navigate through the ice that has already been tested successfully in a terrestrial environment. This means no atmosphere and or ambient pressure, low ice temperatures of around 100 to 150K (near the South Pole) and a very low gravity of 0,114 m/s^2 or 1100 μg. Two of these influencing measures are about to be investigated at FH Aachen UAS in 2017, low ice temperature and low ambient pressure below the triple point of water. Low gravity cannot be easily simulated inside a large experiment chamber, though. Numerical simulations of the melting process at RWTH Aachen however are showing a gravity dependence of melting behavior. Considering this aspect, VIPER provides a link between large-scale experimental simulations at FH Aachen UAS and numerical simulations at RWTH Aachen. To analyze the melting process, about 90 seconds of experiment time in reduced gravity and low ambient pressure is provided by the REXUS rocket. In this time frame, the melting speed and contact force between ice and probes are measured, as well as heating power and a two-dimensional array of ice temperatures. Additionally, visual and infrared cameras are used to observe the melting process.}, language = {en} } @article{HeinkeKnickerAlbracht2018, author = {Heinke, Lars N. and Knicker, Axel J. and Albracht, Kirsten}, title = {Evaluation of passively induced shoulder stretch reflex using an isokinetic dynamometer in male overhead athletes}, series = {Isokinetics and Exercise Science}, volume = {26}, journal = {Isokinetics and Exercise Science}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1878-5913}, doi = {10.3233/IES-184111}, pages = {265 -- 274}, year = {2018}, abstract = {BACKGROUND: Muscle stretch reflexes are widely considered to beneficially influence joint stability and power generation in the lower limbs. While in the upper limbs and especially in the muscles surrounding the shoulder joint such evidence is lacking. OBJECTIVE: To quantify the electromyographical response in the muscles crossing the shoulder of specifically trained overhead athletes to an anterior perturbation force. METHODS: Twenty healthy male participants performed six sets of different external shoulder rotation stretches on an isokinetic dynamometer over a range of amplitudes and muscle pre-activation moment levels. All stretches were applied with a dynamometer acceleration of 10,000∘/s2 and a velocity of 150∘/s. Electromyographical response was measured via sEMG. RESULTS: Consistent reflexes were not observed in all experimental conditions. The reflex latencies revealed a significant muscle main effect (F (2,228) = 99.31, p< 0.001; η2= 0.466; f= 0.934) and a pre-activation main effect (F (1,228) = 142.21, p< 0.001; η2= 0.384; f= 1.418). The stretch reflex amplitude yielded a significant pre-activation main effect (F (1,222) = 470.373, p< 0.001; η2= 0.679; f= 1.454). CONCLUSION: Short latency muscle reflexes showed a tendency to an anterior to posterior muscle recruitment whereby the main internal rotator muscles of the shoulder revealed the most consistent results.}, language = {en} } @inproceedings{RichterBraunsteinStaeudleetal.2018, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, T. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices}, series = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, booktitle = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, year = {2018}, language = {en} } @article{BalakirskiKotliarPaulyetal.2018, author = {Balakirski, Galina and Kotliar, Konstantin and Pauly, Karolin J. and Krings, Laura K. and R{\"u}bben, Albert and Baron, Jens M. and Schmitt, Laurenz}, title = {Surgical Site Infections After Dermatologic Surgery in Immunocompromised Patients: A Single-Center Experience}, series = {Dermatologic Surgery}, journal = {Dermatologic Surgery}, number = {44 (12)}, publisher = {Wolters Kluwer}, doi = {10.1097/DSS.0000000000001615}, pages = {1525 -- 1536}, year = {2018}, abstract = {BACKGROUND Immunosuppression is often considered as an indication for antibiotic prophylaxis to prevent surgical site infections (SSI) while performing skin surgery. However, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. PATIENTS AND METHODS All patients of the Department of Dermatology and Allergology at the University Hospital of RWTH Aachen in Aachen, Germany, who underwent hospitalization for a dermatologic surgery between June 2016 and January 2017 (6 months), were followed up after surgery until completion of the wound healing process. The follow-up addressed the occurrence of SSI and the need for systemic antibiotics after the operative procedure. Immunocompromised patients were compared with immunocompetent patients. The investigation was conducted as a retrospective analysis of patient records. RESULTS The authors performed 284 dermatologic surgeries in 177 patients. Nineteen percent (54/284) of the skin surgery was performed on immunocompromised patients. The most common indications for surgical treatment were nonmelanoma skin cancer and malignant melanomas. Surgical site infections occurred in 6.7\% (19/284) of the cases. In 95\% (18/19), systemic antibiotic treatment was needed. Twenty-one percent of all SSI (4/19) were seen in immunosuppressed patients. CONCLUSION According to the authors' data, immunosuppression does not represent a significant risk factor for SSI after dermatologic surgery. However, larger prospective studies are needed to make specific recommendations on the use of antibiotic prophylaxis while performing skin surgery in these patients. The available data on complications after dermatologic surgery have improved over the past years. Particularly, additional risk factors have been identified for surgical site infections (SSI). Purulent surgical sites, older age, involvement of head, neck, and acral regions, and also the involvement of less experienced surgeons have been reported to increase the risk of the SSI after dermatologic surgeries.1 In general, the incidence of SSI after skin surgery is considered to be low.1,2 However, antibiotics in dermatologic surgeries, especially in the perioperative setting, seem to be overused,3,4 particularly regarding developing antibiotic resistances and side effects. Immunosuppression has been recommended to be taken into consideration as an additional indication for antibiotic prophylaxis to prevent SSI after skin surgery in special cases.5,6 However, these recommendations do not specify the exact dermatologic surgeries, and were not specifically developed for dermatologic surgery patients and treatments, but adopted from other surgical fields.6 According to the survey conducted on American College of Mohs Surgery members in 2012, 13\% to 29\% of the surgeons administered antibiotic prophylaxis to immunocompromised patients to prevent SSI while performing dermatologic surgery on noninfected skin,3 although this was not recommended by Journal of the American Academy of Dermatology Advisory Statement. Indeed, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. However, it is possible that due to the insufficient evidence on the risk of SSI occurrence in this patient group, dermatologic surgeons tend to overuse perioperative antibiotic prophylaxis. To make specific recommendations on the use of antibiotic prophylaxis in immunosuppressed patients in the field of skin surgery, more information about the incidence of SSI after dermatologic surgery in these patients is needed. The aim of this study was to fill this data gap by investigating whether there is an increased risk of SSI after skin surgery in immunocompromised patients compared with immunocompetent patients.}, language = {en} } @article{AlbannaKotliarLuekeetal.2018, author = {Albanna, Walid and Kotliar, Konstantin and L{\"u}ke, Jan Niklas and Alpdogan, Serdar and Conzen, Catharina and Lindauer, Ute and Clusmann, Hans and Hescheler, J{\"u}rgen and Vilser, Walthard and Schneider, Toni and Schubert, Gerrit Alexander}, title = {Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis}, series = {Plos one}, volume = {13}, journal = {Plos one}, number = {10}, publisher = {PLOS}, address = {San Francisco}, doi = {10.1371/journal.pone.0204689}, pages = {e0204689}, year = {2018}, abstract = {Background Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. Methods A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. Results A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). Conclusions To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals.}, language = {en} } @article{LapitanRogatkinPersheyevetal.2018, author = {Lapitan, Denis G. and Rogatkin, Dmitrii A. and Persheyev, Sydulla K. and Kotliar, Konstantin}, title = {False spectra formation in the differential two-channel scheme of the laser Doppler flowmeter}, series = {Biomedizinische Technik}, volume = {63}, journal = {Biomedizinische Technik}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0013-5585}, doi = {10.1515/bmt-2017-0060}, pages = {439 -- 444}, year = {2018}, abstract = {Noise in the differential two-channel scheme of a classic laser Doppler flowmetry (LDF) instrument was studied. Formation of false spectral components in the output signal due to beating of electrical signals in the differential amplifier was found out. The improved block-diagram of the flowmeter was developed allowing to reduce the noise.}, language = {en} } @article{RittwegerAlbrachtFluecketal.2018, author = {Rittweger, J{\"o}rn and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Longa, Emanuela and Moriggi, Manuela and Seynnes, Olivier and Di Giulio, Irene and Tenori, Leonardo and Vignoli, Alessia and Capri, Miriam and Gelfi, Cecilia and Luchinat, Claudio and Franceschi, Claudio and Bottinelli, Roberto and Cerretelli, Paolo and Narici, Marco}, title = {Sarcolab pilot study into skeletal muscle's adaptation to longterm spaceflight}, series = {npj Microgravity}, volume = {4}, journal = {npj Microgravity}, number = {1}, publisher = {Nature Portfolio}, issn = {2373-8065}, doi = {10.1038/s41526-018-0052-1}, pages = {1 -- 9}, year = {2018}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Computational comparison of different textile implants to correct apical prolapse in females}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, doi = {10.1515/cdbme-2018-0159}, pages = {661 -- 664}, year = {2018}, abstract = {Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient's anatomical defect, intended function after reconstruction and most importantly the surgeon's preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared.}, language = {en} } @article{HorbachStaat2018, author = {Horbach, Andreas and Staat, Manfred}, title = {Optical strain measurement for the modeling of surgical meshes and their porosity}, series = {Current Directions in Biomedical Engineering}, volume = {Band 4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0045}, pages = {181 -- 184}, year = {2018}, abstract = {The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes.}, language = {en} } @book{ArtmannTemizArtmannZhubanovaetal.2018, author = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, title = {Biological, physical and technical basics of cell engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7903-0}, pages = {xxiv, 481 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} }