@misc{MertensVeldenKelm2006, author = {Mertens, Josef and Velden, Alexander van der and Kelm, Roland}, title = {Flugzeug mit Fl{\"u}geln, deren maximaler Auftrieb durch steuerbare Fl{\"u}gelkomponenten ver{\"a}nderbar ist : Offenlegungsschrift DE102004045732 ; Offenlegungstag: 30.03.2006 = Aircraft with wings whose maximum lift can be altered by controllable wing components}, publisher = {Deutsches Patent- und Markenamt}, address = {M{\"u}nchen}, pages = {6 S. : Ill.}, year = {2006}, language = {de} } @article{Mertens2006, author = {Mertens, Josef}, title = {Luft hat keine Balken, aber enorme Kr{\"a}fte : Aerodynamik - die unsichtbare Kraft}, series = {HEmagazin : das Hocheffizienz-Magazin von Wilo. 2006 (2006), H. 1}, journal = {HEmagazin : das Hocheffizienz-Magazin von Wilo. 2006 (2006), H. 1}, publisher = {-}, pages = {4 -- 9}, year = {2006}, language = {de} } @misc{MertensLajain2002, author = {Mertens, Josef and Lajain, Henri}, title = {Method of fabricating leading edge nose structures of aerodynamic surfaces : patent no.: US 6,415,510 B2 ; date of patent: Jul. 9, 2002}, publisher = {United States Patent and Trademark Office}, address = {[Washington, DC]}, pages = {12 S. : Ill.}, year = {2002}, language = {en} } @article{MertensHenke2001, author = {Mertens, Josef and Henke, Rolf}, title = {Adaptive technologies for future civil air transport}, series = {Air \& Space Europe. 3 (2001), H. 3-4}, journal = {Air \& Space Europe. 3 (2001), H. 3-4}, isbn = {1247-5793}, pages = {80 -- 82}, year = {2001}, language = {en} } @inproceedings{Mertens2001, author = {Mertens, Josef}, title = {Next steps envisaged to improve wing performance of commercial aircraft}, series = {Aerodynamic drag reduction technologies : proceedings of the CEAS/DragNet European Drag Reduction Conference, 19-21 June 2000, Potsdam, Germany. - (Notes on numerical fluid mechanics ; 76)}, booktitle = {Aerodynamic drag reduction technologies : proceedings of the CEAS/DragNet European Drag Reduction Conference, 19-21 June 2000, Potsdam, Germany. - (Notes on numerical fluid mechanics ; 76)}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-41911-X (Print)}, doi = {10.1007/978-3-540-45359-8_26}, pages = {246 -- 255}, year = {2001}, language = {en} } @article{MertensRoeger2000, author = {Mertens, Josef and R{\"o}ger, Wolf}, title = {F-Schlepp: Problem Taumelschwingung}, series = {Aerokurier. 44 (2000), H. 10}, journal = {Aerokurier. 44 (2000), H. 10}, isbn = {0341-1281}, pages = {73 -- 73}, year = {2000}, language = {de} } @book{MertensVeldenKelmetal.2000, author = {Mertens, Josef and Velden, Alexander van der and Kelm, Roland and Kokan, David}, title = {Application of MDO to large subsonic transport aircraft}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, Va.}, pages = {12 S. : zahlr. Ill. u. graph. Darst.}, year = {2000}, language = {en} } @article{MertensKelmVelden1999, author = {Mertens, Josef and Kelm, R. and Velden, A. van der}, title = {Interdisziplin{\"a}re Auslegung eines Verkehrsflugzeugfl{\"u}gels}, series = {DGLR-Jahrbuch 1999 Bd. 3}, journal = {DGLR-Jahrbuch 1999 Bd. 3}, pages = {1605 -- 1610}, year = {1999}, language = {de} } @article{Mertens1999, author = {Mertens, Josef}, title = {Einige herausragende Ergebnisse des Technologieprogramms "Reduktion des Aerodynamischen Widerstands (RaWid)"}, series = {DGLR-Jahrbuch 1999 Bd. 3}, journal = {DGLR-Jahrbuch 1999 Bd. 3}, pages = {1461 -- 1468}, year = {1999}, language = {de} } @book{Mertens1999, author = {Mertens, Josef}, title = {Reduktion des aerodynamischen Widerstands (RaWid) : Abschlußbericht ; Laufzeit des Vorhaben, Berichtszeitraum: 01.07.1995 bis 31.12.1998 / Verf.: J. Mertens}, publisher = {DaimlerChrysler Aerospare Airbus GmbH}, address = {Hamburg}, pages = {31 Bl. : Ill., graph. Darst.}, year = {1999}, language = {de} } @book{Mertens1999, author = {Mertens, Josef}, title = {Reduktion des aerodynamischen Widerstands (RaWid) : Abschlußbericht ; Laufzeit des Vorhaben, Berichtszeitraum: 01.07.1995 bis 31.12.1998 / Verf.: J. Mertens}, publisher = {DaimlerChrysler Aerospare Airbus GmbH}, address = {Hamburg}, pages = {Elektronische Ressource 31 p. = 1,38 Mb. text and}, year = {1999}, language = {de} } @inproceedings{Mertens1999, author = {Mertens, Josef}, title = {Some important results of the technology programme RaWid}, series = {New Results in Numerical and Experimental Fluid Mechanics : Contributions to the 11th AG STAB/DGLR Symposium Berlin, Germany 1998. - Vol. 2. - (Notes on Numerical Fluid Mechanics ; 72)}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics : Contributions to the 11th AG STAB/DGLR Symposium Berlin, Germany 1998. - Vol. 2. - (Notes on Numerical Fluid Mechanics ; 72)}, editor = {Nitsche, Wolfgang}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, isbn = {978-3-663-10903-7 (Print)}, doi = {10.1007/978-3-663-10901-3_41}, pages = {315 -- 322}, year = {1999}, language = {en} } @article{Mertens1998, author = {Mertens, Josef}, title = {Required technologies for supersonic aircraft}, series = {Fluid dynamics research on supersonic aircraft : this report is a compilation of the edited proceedings of the special course on "Fluid dynamic research on supersonic aircraft" held at the Karman Institute for Fluid Dynamics (VKI) in Rhode-Saint-Genese, Belgium, 25-29 May 1998}, journal = {Fluid dynamics research on supersonic aircraft : this report is a compilation of the edited proceedings of the special course on "Fluid dynamic research on supersonic aircraft" held at the Karman Institute for Fluid Dynamics (VKI) in Rhode-Saint-Genese, Belgium, 25-29 May 1998}, publisher = {Research and Technology Organization}, address = {Neuilly-sur-Seine}, isbn = {92-837-1007-X}, pages = {5.1 -- 5.16}, year = {1998}, language = {en} } @article{Mertens1998, author = {Mertens, Josef}, title = {Multi point design challenges for supersonic transports}, series = {Fluid dynamics research on supersonic aircraft : this report is a compilation of the edited proceedings of the special course on "Fluid dynamics research on supersonic aircraft" held at the Karman Institute for Fluid Dynamics (VKI) in Rhode-Saint-Genese, Belgium, 25-29 May 1998}, journal = {Fluid dynamics research on supersonic aircraft : this report is a compilation of the edited proceedings of the special course on "Fluid dynamics research on supersonic aircraft" held at the Karman Institute for Fluid Dynamics (VKI) in Rhode-Saint-Genese, Belgium, 25-29 May 1998}, publisher = {Research and Technology Organization}, address = {Neuilly-sur-Seine}, isbn = {92-837-1007-X}, pages = {8.1 -- 8.12}, year = {1998}, language = {en} } @article{Mertens1998, author = {Mertens, Josef}, title = {Aerodynamische Ziele des Adaptiven Fl{\"u}gels (ADIF).}, series = {DGLR-Jahrbuch 1998 Bd. 1}, journal = {DGLR-Jahrbuch 1998 Bd. 1}, pages = {47 -- 52}, year = {1998}, language = {de} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Aerodynamic multi point design challenge}, series = {New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_4}, pages = {53 -- 67}, year = {1997}, abstract = {In the chapter "Son of Concorde, a Technology Challenge" one of the new challenges for a Supersonic Commercial Transport (SCT) is multi-point design for the four main design points: - supersonic cruise - transonic cruise - take-off and landing - transonic acceleration.}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Required aerodynamic technologies}, series = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_5}, pages = {69 -- 96}, year = {1997}, abstract = {In the preceeding chapters on "Son of Concorde, a Technology Challenge" and "Aerodynamic Multipoint Design Challenge" it was explained, that a well balanced contribution of new technologies in all major disciplines is required for realisation of a new Supersonic Commercial Transport (SCT). One of these technologies - usually one of the most important for aircraft-is aerodynamics. Here, the required "pure" aerodynamic technologies are specified in more detail, according to our present knowledge. Increasing insight into the problems may change the balance of importance of the individual technologies and may require some more contributions. We must never confine our knowledge to the knowledge base of an expert at a given time, but must stay open for new insights.}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Certification of supersonic civil transports}, series = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_6}, pages = {97 -- 103}, year = {1997}, abstract = {Since certification of Concorde new certification standards were introduced including many new regulations to improve flight safety. Most of these standards are to prevent severe accidents in the future which happened in the past (here: after Concorde's certification). A new SCT has to fulfill these standards, although Concorde had none of these accidents. But accidents - although they sometimes occurred only for a specific aircraft type - have to be avoided for any (new) aircraft. Because of existing aircraft without typical accident types having demonstrated their reliability, they are allowed to go on based on their old certification; although sometimes new rules prevent accident types which are not connected to specific aircraft types - like e.g. evacuation rules. Anyway, Concorde is allowed to fly based on its old certification, and hopefully in the future will fly as safely as in the past. But a new SCT has to fulfill updated rules like any other aircraft, and it has to be "just another aircraft" [75].}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Supersonic laminar flow}, series = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_18}, pages = {275 -- 290}, year = {1997}, abstract = {Supersonic transports are very drag sensitive. Technology to reduce drag by application of laminar flow, therefore, will be important; it is a prerequisite to achieve very long range capability. In earlier studies it was assumed that SCTs would only become possible by application of laminar flow [376]. But today, we request an SCT to be viable without application of laminar flow in order to maintain its competitiveness when laminar flow becomes available for subsonic and supersonic transports. By reducing fuel burned, laminar flow drag reduction reduces size and weight of the aircraft, or increases range capability -whereas otherwise size and weight would grow towards infinity. Transition mechanisms from laminar to turbulent state of the boundary layer flow (ALT, CFI, TSI) function as for transonic transports, but at more severe conditions: higher sweep angles, cooled surfaces; higher mode instabilities (HMI) must at least be taken into account, although they may not become important below Mach 3. Hitherto there is a worldwide lack of ground test facilities to investigate TSI at the expected cruise Mach numbers between 1.6 and 2.4; in Stuttgart, Germany one such facility -a Ludwieg tube- is still in the validation phase. A quiet Ludwieg tunnel could be a favourable choice for Europe. But it will require a new approach in designing aircraft which includes improved theoretical predictions, usage of classical wind tunnels for turbulent flow and flight tests for validation.}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Son of Concorde, a technology challenge}, series = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_3}, pages = {31 -- 51}, year = {1997}, abstract = {Concorde (Figure 9) is the only supersonic airliner which has been introduced into regular passenger service. It is still in service at British Airways and Air France without any flight accidents, and probably will stay in service for at least for ten more years.}, language = {en} }