@article{BaeckerKochEibenetal.2017, author = {B{\"a}cker, Matthias and Koch, Claudia and Eiben, Sabine and Geiger, Fania and Eber, Fabian and Gliemann, Hartmut and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors}, series = {Sensors and Actuators B: Chemical}, volume = {238}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.07.096}, pages = {716 -- 722}, year = {2017}, abstract = {The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips.}, language = {en} } @article{HugenrothNeidlinEngelmannetal.2021, author = {Hugenroth, Kristin and Neidlin, Michael and Engelmann, Ulrich M. and Kaufmann, Tim A. S. and Steinseifer, Ulrich and Heilmann, Torsten}, title = {Tipless Transseptal Cannula Concept Combines Improved Hemodynamic Properties and Risk-Reduced Placement: an In Silico Proof-of-Concept}, series = {Artificial Organs}, journal = {Artificial Organs}, number = {Accepted Article}, publisher = {Wiley}, address = {Weinheim}, issn = {1525-1594}, doi = {10.1111/aor.13964}, year = {2021}, language = {en} } @article{StreunBrandenburgKhodaverdietal.2006, author = {Streun, M. and Brandenburg, G. and Khodaverdi, M. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {Timemark correction for the ClearPET™ scanners}, series = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, isbn = {1082-3654}, pages = {2057 -- 2060}, year = {2006}, abstract = {The small animal PET scanners developed by the Crystal Clear Collaboration (ClearPETtrade) detect coincidences by analyzing timemarks which are attached to each event. The scanners are able to save complete single list mode data which allows analysis and modification of the timemarks after data acquisition. The timemarks are obtained from the digitally sampled detector pulses by calculating the baseline crossing of the rising edge of the pulse which is approximated as a straight line. But the limited sampling frequency causes a systematic error in the determination of the timemark. This error depends on the phase of the sampling clock at the time of the event. A statistical method that corrects these errors will be presented}, language = {en} } @article{GeierLehnertzBialonski2015, author = {Geier, Christian and Lehnertz, Klaus and Bialonski, Stephan}, title = {Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing}, series = {Frontiers in Human Neuroscience}, journal = {Frontiers in Human Neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2015.00462}, year = {2015}, language = {en} } @article{Dikta2006, author = {Dikta, Gerhard}, title = {Time series methods to forecast patent filings}, series = {Forecasting innovations : methods for predicting numbers of patent filings ; with 71 tables / Peter Hingley ; Marc Nicolas (ed.),}, journal = {Forecasting innovations : methods for predicting numbers of patent filings ; with 71 tables / Peter Hingley ; Marc Nicolas (ed.),}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-540-35991-3}, doi = {10.1007/3-540-35992-3_6}, pages = {95 -- 124}, year = {2006}, language = {en} } @article{TersteggeFlachskampfFrankeetal.1995, author = {Terstegge, Andreas and Flachskampf, F. A. and Franke, A. and Job, F. P. [u.a.]}, title = {Three-dimensional reconstruction of cardiac structures from transesophageal echocardiography}, series = {American journal of cardiac imaging. 9 (1995), H. 2}, journal = {American journal of cardiac imaging. 9 (1995), H. 2}, isbn = {0887-7971}, pages = {141 -- 147}, year = {1995}, language = {en} } @article{Reissel1997, author = {Reißel, Martin}, title = {Three-dimensional eddy-current computation using Krylov subspace methods / Reissel, Martin}, series = {IMA Journal of Mathematics Applied in Business and Industry. 8 (1997), H. 2}, journal = {IMA Journal of Mathematics Applied in Business and Industry. 8 (1997), H. 2}, isbn = {1471-678X}, pages = {99 -- 121}, year = {1997}, language = {en} } @article{MuellerVeggianLiederGono1977, author = {M{\"u}ller-Veggian, Mattea and Lieder, R. M. and Gono, Y.}, title = {Three particle-bands in ¹⁹⁵,¹⁹⁷ Tl}, series = {Annual report 1976 / Institut f{\"u}r Kernphysik Kernforschungsanlage J{\"u}lich / Ed. board: A. F{\"a}ßler ...}, journal = {Annual report 1976 / Institut f{\"u}r Kernphysik Kernforschungsanlage J{\"u}lich / Ed. board: A. F{\"a}ßler ...}, publisher = {Kernforschungsanlage}, address = {J{\"u}lich}, pages = {35}, year = {1977}, language = {en} } @article{KirchnerLiSpelthahnetal.2009, author = {Kirchner, Patrick and Li, B. and Spelthahn, H. and Henkel, H. and Friedrich, P. and Kolstad, J. and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Thin-film calorimetric H2O2 gas sensor for the validation of germicidal effectivity in aseptic filling processes}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, isbn = {1876-6196}, pages = {983 -- 986}, year = {2009}, language = {en} } @article{KirchnerLiSpelthahnetal.2011, author = {Kirchner, Patrick and Li, Bin and Spelthahn, Heiko and Henkel, Hartmut and Schneider, Andreas and Friedrich, Peter and Kolstad, Jens and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Thin-film calorimetric H2O2 gas sensor for the validation of germicidal effectivity in aseptic filling processes}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {257 -- 263}, year = {2011}, language = {en} } @article{SchoeningSchmidtSchubertetal.2000, author = {Sch{\"o}ning, Michael Josef and Schmidt, C. and Schubert, J. and Zander, W. and Mesters, S. and Kordos, P. and L{\"u}th, H. and Legin, A. and Seleznev, B. and Vlasov, Y. G.}, title = {Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique}, series = {Sensors and Actuators B. 68 (2000), H. 1-3}, journal = {Sensors and Actuators B. 68 (2000), H. 1-3}, isbn = {0925-4005}, pages = {254 -- 259}, year = {2000}, language = {en} } @article{SchoeningSchmidtSchubertetal.1999, author = {Sch{\"o}ning, Michael Josef and Schmidt, C. and Schubert, J. and Zander, W. and Kordos, P. and L{\"u}th, H. and Legin, A. and Seleznev, B. and Vlasov, Y. G.}, title = {Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique}, series = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, journal = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, address = {The Hague, The Netherlands}, isbn = {90-76699-02-X}, pages = {847 -- 850}, year = {1999}, language = {en} } @article{MourzinaSchoeningSchubertetal.2000, author = {Mourzina, Yu.G. and Sch{\"o}ning, Michael Josef and Schubert, J. and Zander, W. and Legin, A. and Vlasov, Y. G. and L{\"u}th, H.}, title = {Thin film microsensors for fast heavy metal analysis}, series = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, journal = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, publisher = {MIC, Mikroelektronik Centret}, address = {Lyngby, Denmark}, isbn = {87-89935-50-0}, pages = {839 -- 840}, year = {2000}, language = {en} } @article{SchoeningGlueckKordosetal.1999, author = {Sch{\"o}ning, Michael Josef and Gl{\"u}ck, O. and Kordos, P. and L{\"u}th, H. and Emons, H.}, title = {Thin film electrodes for trace metal analysis by dc resistance changes}, series = {Proceedings of SPIE. 3857 (1999)}, journal = {Proceedings of SPIE. 3857 (1999)}, pages = {135 -- 143}, year = {1999}, language = {en} } @article{MourzinaLeginVlasovetal.2001, author = {Mourzina, Y. G. and Legin, A. and Vlasov, Y. G. and Sch{\"o}ning, Michael Josef and Schubert, J. and Zander, W. and L{\"u}th, H.}, title = {Thin film chemical sensors based on chalcogenide glasses for „electronic tongue" applications}, series = {Sensor 2001 : 10th international conference, May 8 - 10, 2001, Exhibition Centre Nuremberg, Germany ; proceedings}, journal = {Sensor 2001 : 10th international conference, May 8 - 10, 2001, Exhibition Centre Nuremberg, Germany ; proceedings}, publisher = {AMA Service}, address = {Wunstorf}, pages = {137 -- 141}, year = {2001}, language = {en} } @article{MolinnusJanusFangetal.2022, author = {Molinnus, Denise and Janus, Kevin Alexander and Fang, Anyelina C. and Drinic, Aleksander and Achtsnicht, Stefan and K{\"o}pf, Marius and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Thick-film carbon electrode deposited onto a biodegradable fibroin substrate for biosensing applications}, series = {Physica status solidi (a)}, volume = {219}, journal = {Physica status solidi (a)}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202200100}, pages = {1 -- 9}, year = {2022}, abstract = {This study addresses a proof-of-concept experiment with a biocompatible screen-printed carbon electrode deposited onto a biocompatible and biodegradable substrate, which is made of fibroin, a protein derived from silk of the Bombyx mori silkworm. To demonstrate the sensor performance, the carbon electrode is functionalized as a glucose biosensor with the enzyme glucose oxidase and encapsulated with a silicone rubber to ensure biocompatibility of the contact wires. The carbon electrode is fabricated by means of thick-film technology including a curing step to solidify the carbon paste. The influence of the curing temperature and curing time on the electrode morphology is analyzed via scanning electron microscopy. The electrochemical characterization of the glucose biosensor is performed by amperometric/voltammetric measurements of different glucose concentrations in phosphate buffer. Herein, systematic studies at applied potentials from 500 to 1200 mV to the carbon working electrode (vs the Ag/AgCl reference electrode) allow to determine the optimal working potential. Additionally, the influence of the curing parameters on the glucose sensitivity is examined over a time period of up to 361 days. The sensor shows a negligible cross-sensitivity toward ascorbic acid, noradrenaline, and adrenaline. The developed biocompatible biosensor is highly promising for future in vivo and epidermal applications.}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Thermocatalytic Behavior of Manganese (IV) Oxide as Nanoporous Material on the Dissociation of a Gas Mixture Containing Hydrogen Peroxide}, series = {Nanomaterials}, volume = {8}, journal = {Nanomaterials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano8040262}, pages = {Artikel 262}, year = {2018}, abstract = {In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H₂O₂) gas on a manganese (IV) oxide (MnO₂) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H₂O₂ gas sensor based on porous MnO₂. Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H₂O₂ dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO₂ catalyst.}, language = {en} } @article{WeberSchmittJahn1988, author = {Weber, Hans-Joachim and Schmitt, W. and Jahn, D.}, title = {Thermische Untersuchungen beim Bohren in kortikalem Knochen unter Verwendung verschiedener K{\"u}hlsysteme / Schmitt, W. ; Weber, H. J. ; Jahn, D.}, series = {Deutsche zahn{\"a}rztliche Zeitschrift : DZZ. 43 (1988), H. 7}, journal = {Deutsche zahn{\"a}rztliche Zeitschrift : DZZ. 43 (1988), H. 7}, isbn = {0012-1029}, pages = {802 -- 805}, year = {1988}, language = {de} } @article{StadlerGarveyBocahutetal.2012, author = {Stadler, Andreas M. and Garvey, G. J. and Bocahut, A. and Sacquin-Mora, S. and Digel, Ilya and Schneider, G. J. and Natali, F. and Artmann, Gerhard and Zaccai, G.}, title = {Thermal fluctuations of haemoglobin from different species : adaptation to temperature via conformational dynamics}, series = {Journal of the Royal Society Interface}, volume = {9}, journal = {Journal of the Royal Society Interface}, number = {76}, publisher = {The Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2012.0364}, pages = {2845 -- 2855}, year = {2012}, abstract = {Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 {\AA} at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.}, language = {en} } @article{Laack2014, author = {Laack, Walter van}, title = {Therefore Fermat is right}, series = {American journal of humanities and social sciences : AJHSS}, volume = {2}, journal = {American journal of humanities and social sciences : AJHSS}, number = {2}, issn = {2329-079X (E-Journal); 2329-0781 (Print)}, pages = {117 -- 120}, year = {2014}, abstract = {It was Fernat's idea to investigate how many numbers would fulfill the equation according to the Pythagorean Theorem if the exponent were increased to random, e.g. to a3 + b3 = c3. His question became therefore: are there two whole numbers the cubes of which add up to the volume of the cube of a third whole number? He posed this same question, of course, for all kinds of higher exponents, so that the equation could be generalized: is there an integral solution for the equation an + bn = cn, if the exponent n is higher than 2? Although in 1993, the English mathematician Andrew Wiles was able to produce an arithmetical proof for Fermat's famous theorem, I will show that there is a simple logical explanation which is also pragmatic and plausible and what is the result of a fundamental alternative idea how our world seems to be constructed.}, language = {en} }