@inproceedings{SattlerSchneiderAngeleetal.2022, author = {Sattler, Johannes Christoph and Schneider, Iesse Peer and Angele, Florian and Atti, Vikrama Naga Babu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Development of heliostat field calibration methods: Theory and experimental test results}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.678}, pages = {9 Seiten}, year = {2022}, abstract = {In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut J{\"u}lich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy.}, language = {en} } @inproceedings{ChicoCaminosSchmitzAttietal.2022, author = {Chico Caminos, Ricardo Alexander and Schmitz, Pascal and Atti, Vikrama Naga Babu and Mahdi, Zahra and Teixeira Boura, Cristiano Jos{\´e} and Sattler, Johannes Christoph and Herrmann, Ulf and Hilger, Patrick and Dieckmann, Simon}, title = {Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086262}, pages = {8 Seiten}, year = {2022}, abstract = {The Solar-Institut J{\"u}lich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed.}, language = {en} } @inproceedings{SattlerAttiAlexopoulosetal.2022, author = {Sattler, Johannes Christoph and Atti, Vikrama Naga Babu and Alexopoulos, Spiros and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf and Dutta, Siddharth and Kioutsioukis, Ioannis}, title = {DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.731}, pages = {9 Seiten}, year = {2022}, abstract = {This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut J{\"u}lich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 \% based on the tested days. The result fulfils SIJ's aim to achieve a reliability of around 70 \%, but SIJ aims to still improve the DNI forecast quality.}, language = {en} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus and Kaufhold, O.}, title = {High Concentration Solar Collectors}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, doi = {10.1016/B978-0-12-819727-1.00058-3}, pages = {198 -- 245}, year = {2022}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @techreport{GhinaiyaLehmannGoettsche2022, author = {Ghinaiya, Jagdishkumar and Lehmann, Thomas Martin and G{\"o}ttsche, Joachim}, title = {LOCAL+ - ein kreislauff{\"a}higer Holzmodulbau mit nachhaltigem Energie- und Wohnraumkonzept}, series = {Bauphysik}, volume = {44}, journal = {Bauphysik}, number = {3}, publisher = {Ernst \& Sohn}, address = {Hoboken}, issn = {0171-5445 (Print)}, doi = {10.1002/bapi.202200010}, pages = {136 -- 142}, year = {2022}, abstract = {Mit dem Beitrag des Teams der FH Aachen zum SDE 21/22 wird im Projekt LOCAL+ ein kreislauff{\"a}higer Holzmodulbau mit einem innovativen Wohnraumkonzept geplant und umgesetzt. Ziel dieses Konzeptes ist die Verringerung des stetig steigenden Wohnfl{\"a}chenbedarfs durch ein Raum-in-Raum Konzept. Geb{\"a}udetechnisch wird in dem Projekt nicht nur das Einzelgeb{\"a}ude betrachtet, sondern unter Ber{\"u}cksichtigung des Geb{\"a}udebestandes wird f{\"u}r das Quartier ein innovatives und nachhaltiges Energiekonzept entwickelt. Ein zentrales Wasserstoffsystem ist f{\"u}r ein Quartier geplant, um den Stromverbrauch aus dem Netz im Winter zu reduzieren. Zentraler Bestandteil des TGA-Konzepts ist ein unterirdischer Eisspeicher, eine PVT und eine W{\"a}rmepumpe mit intelligenter Regelstrategie. Ein Teil des neuen Geb{\"a}udes (Design Challenge DC) wird in Wuppertal als Hausdemonstrationseinheit (HDU) pr{\"a}sentiert. Eine hygrothermische Simulation der HDU wurde mit der WUFI-Software durchgef{\"u}hrt. Da im Innenraum Lehmmodule und -platten als Feuchtigkeitspuffer verwendet werden, spielen die Themen Feuchtigkeit, Holzf{\"a}ule und Schimmelwachstum eine wichtige Rolle.}, language = {de} } @inproceedings{NeumannAdamBackesetal.2021, author = {Neumann, Hannah and Adam, Mario and Backes, Klaus and B{\"o}rner, Martin and Clees, Tanja and Doetsch, Christian and Glaeser, Susanne and Herrmann, Ulf and May, Johanna and Rosenthal, Florian and Sauer, Dirk Uwe and Stadler, Ingo}, title = {Development of open educational resources for renewable energy and the energy transition process}, series = {ISES SWC 2021}, booktitle = {ISES SWC 2021}, publisher = {International Solar Energy Society}, address = {Freiburg}, doi = {10.18086/swc.2021.47.03}, pages = {6 Seiten}, year = {2021}, abstract = {The dissemination of knowledge about renewable energies is understood as a social task with the highest topicality. The transfer of teaching content on renewable energies into digital open educational resources offers the opportunity to significantly accelerate the implementation of the energy transition. Thus, in the here presented project six German universities create open educational resources for the energy transition. These materials are available to the public on the internet under a free license. So far there has been no publicly accessible, editable media that cover entire learning units about renewable energies extensively and in high technical quality. Thus, in this project, the content that remains up-to-date for a longer period is appropriately prepared in terms of media didactics. The materials enable lecturers to provide students with in-depth training about technologies for the energy transition. In a particular way, the created material is also suitable for making the general public knowledgeable about the energy transition with scientifically based material.}, language = {en} } @article{BlankeRegerDoeringetal.2021, author = {Blanke, Tobias and Reger, Vitali and D{\"o}ring, Bernd and G{\"o}ttsche, Joachim and Kuhnhenne, Markus}, title = {Koaxiale Stahlenergiepf{\"a}hle}, series = {Stahlbau}, volume = {90. 2021}, journal = {Stahlbau}, number = {6}, publisher = {Wiley}, address = {Weinheim}, pages = {417 -- 424}, year = {2021}, abstract = {Ein entscheidender Teil der Energiewende ist die W{\"a}rmewende im Geb{\"a}udesektor. Ein Schl{\"u}sselelement sind hier W{\"a}rmepumpen. Diese ben{\"o}tigen eine W{\"a}rmequelle, der sie Energie entziehen k{\"o}nnen, um sie auf ein h{\"o}heres Temperaturniveau zu transformieren. Diese W{\"a}rmequelle kann bspw. das Erdreich sein, dessen W{\"a}rme durch Erdsonden erschlossen werden kann. In diesem Beitrag werden in Stahlpf{\"a}hle integrierte Koaxialsonden mit dem Stand der Technik von Erdsonden gleichen Durchmessers bez{\"u}glich ihrer thermischen Leistungsmerkmale verglichen. Die Stahlenergiepf{\"a}hle bieten neben der W{\"a}rmegewinnung weitere Vorteile, da sie auch eine statische Funktion {\"u}bernehmen und r{\"u}ckstandsfrei zur{\"u}ckgebaut werden k{\"o}nnen. Es werden analytische und numerische Berechnungen vorgestellt, um die thermischen Potenziale beider Systeme zu vergleichen. Außerdem wird ein Testaufbau gezeigt, bei dem Stahlenergiepf{\"a}hle in zwei verschiedenen L{\"a}ngen mit vorhandenen g{\"a}ngigen Erdsonden verglichen werden k{\"o}nnen. Die Berechnungen zeigen einen deutlichen thermischen Mehrertrag zwischen 26 \% und 148 \% der Stahlenergiepf{\"a}hle gegen{\"u}ber dem Stand der Technik abh{\"a}ngig vom Erdreich. Die Messergebnisse zeigen einen thermischen Mehrertrag von {\"u}ber 100 \%. Es l{\"a}sst sich also signifikante Erdsondenl{\"a}nge einsparen. Dabei ist zu beachten, dass sich damit der thermisch genutzte Bereich des Erdreichs reduziert, wodurch die thermische Regeneration und/oder das Langzeitverhalten des Erdreichs an Bedeutung gewinnt.}, language = {de} } @inproceedings{SchulzeBuxlohGross2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz}, title = {Interdisciplinary Course Smart Building Engineering: A new approach of teaching freshmen in remote teamwork project under pandemic restrictions}, series = {New Perspectives in Science Education - International Conference}, booktitle = {New Perspectives in Science Education - International Conference}, publisher = {Filodiritto}, address = {Bologna}, pages = {4 Seiten}, year = {2021}, abstract = {In the context of the Corona pandemic and its impact on teaching like digital lectures and exercises a new concept especially for freshmen in demanding courses of Smart Building Engineering became necessary. As there were hardly any face-to-face events at the university, the new teaching concept should enable a good start into engineering studies under pandemic conditions anyway and should also replace the written exam at the end. The students should become active themselves in small teams instead of listening passively to a lecture broadcast online with almost no personal contact. For this purpose, a role play was developed in which the freshmen had to work out a complete solution to the realistic problem of designing, construction planning and implementing a small guesthouse. Each student of the team had to take a certain role like architect, site manager, BIM-manager, electrician and the technitian for HVAC installations. Technical specifications must be complied with, as well as documentation, time planning and cost estimate. The final project folder had to contain technical documents like circuit diagrams for electrical components, circuit diagrams for water and heating, design calculations and components lists. On the other hand construction schedule, construction implementation plan, documentation of the construction progress and minutes of meetings between the various trades had to be submitted as well. In addition to the project folder, a model of the construction project must also be created either as a handmade model or as a digital 3D-model using Computer-aided design (CAD) software. The first steps in the field of Building information modelling (BIM) had also been taken by creating a digital model of the building showing the current planning status in real time as a digital twin. This project turned out to be an excellent training of important student competencies like teamwork, communication skills, and self -organisation and also increased motivation to work on complex technical questions. The aim of giving the student a first impression on the challenges and solutions in building projects with many different technical trades and their points of view was very well achieved and should be continued in the future.}, language = {en} } @inproceedings{SchulzeBuxlohGross2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz}, title = {Miniature urban farming plant: a complex educational "Toy" for engineering students}, series = {The Future of Education 11th Edition 2021}, booktitle = {The Future of Education 11th Edition 2021}, pages = {4 Seiten}, year = {2021}, abstract = {Urban farming is an innovative and sustainable way of food production and is becoming more and more important in smart city and quarter concepts. It also enables the production of certain foods in places where they usually dare not produced, such as production of fish or shrimps in large cities far away from the coast. Unfortunately, it is not always possible to show students such concepts and systems in real life as part of courses: visits of such industry plants are sometimes not possible because of distance or are permitted by the operator for hygienic reasons. In order to give the students the opportunity of getting into contact with such an urban farming system and its complex operation, an industrial urban farming plant was set up on a significantly smaller scale. Therefore, all needed technical components like water aeriation, biological and mechanical filtration or water circulation have been replaced either by aquarium components or by self-designed parts also using a 3D-printer. Students from different courses like mechanical engineering, smart building engineering, biology, electrical engineering, automation technology and civil engineering were involved in this project. This "miniature industrial plant" was also able to start operation and has now been running for two years successfully. Due to Corona pandemic, home office and remote online lectures, the automation of this miniature plant should be brought to a higher level in future for providing a good control over the system and water quality remotely. The aim of giving the student a chance to get to know the operation of an urban farming plant was very well achieved and the students had lots of fun in "playing" and learning with it in a realistic way.}, language = {en} } @inproceedings{SchulzeBuxlohGrossUlbrich2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz and Ulbrich, Michelle}, title = {Digital planning using building information modelling and virtual reality: new approach for students' remote practical training under lockdown conditions in the course of smart building engineering}, series = {Proceedings of International Conference on Education in Mathematics, Science and Technology 2021}, booktitle = {Proceedings of International Conference on Education in Mathematics, Science and Technology 2021}, publisher = {ISTES Organization}, address = {San Antonio, TX}, isbn = {978-1-952092-17-6}, pages = {118 -- 123}, year = {2021}, abstract = {The worldwide Corona pandemic has severely restricted student projects in the higher semesters of engineering courses. In order not to delay the graduation, a new concept had to be developed for projects under lockdown conditions. Therefore, unused rooms at the university should be digitally recorded in order to develop a new usage concept as laboratory rooms. An inventory of the actual state of the rooms was done first by taking photos and listing up all flaws and peculiarities. After that, a digital site measuring was done with a 360° laser scanner and these recorded scans were linked to a coherent point cloud and transferred to a software for planning technical building services and supporting Building Information Modelling (BIM). In order to better illustrate the difference between the actual and target state, two virtual reality models were created for realistic demonstration. During the project, the students had to go through the entire digital planning phases. Technical specifications had to be complied with, as well as documentation, time planning and cost estimate. This project turned out to be an excellent alternative to on-site practical training under lockdown conditions and increased the students' motivation to deal with complex technical questions.}, language = {en} } @inproceedings{ElMoussaouiKassmiAlexopoulosetal.2021, author = {El Moussaoui, Noureddine and Kassmi, Khalil and Alexopoulos, Spiros and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy}, series = {Materialstoday: Proceedings}, volume = {45}, booktitle = {Materialstoday: Proceedings}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-7853}, doi = {10.1016/j.matpr.2021.03.115}, pages = {7653 -- 7660}, year = {2021}, abstract = {In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10\%, and in the quantity of water produced by a factor of 3.}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2021, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, Ricardo Alexander and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating Solar Power}, series = {Earth systems and environmental sciences}, booktitle = {Earth systems and environmental sciences}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-409548-9}, doi = {10.1016/B978-0-12-819727-1.00089-3}, year = {2021}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @article{GorzalkaSchmiedtSchorn2021, author = {Gorzalka, Philip and Schmiedt, Jacob Estevam and Schorn, Christian}, title = {Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery}, series = {Buildings}, volume = {11}, journal = {Buildings}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings11090380}, pages = {15 Seiten}, year = {2021}, abstract = {An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12\% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20\% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment.}, language = {en} } @inproceedings{MohanGrossMenzeletal.2021, author = {Mohan, Nijanthan and Groß, Rolf Fritz and Menzel, Karsten and Theis, Fabian}, title = {Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany - A Case Study}, series = {WIT Transactions on The Built Environment, Vol. 205}, booktitle = {WIT Transactions on The Built Environment, Vol. 205}, publisher = {WIT Press}, address = {Southampton}, issn = {1743-3509}, doi = {10.2495/BIM210101}, pages = {117 -- 126}, year = {2021}, abstract = {Even though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.}, language = {en} } @inproceedings{DuemmlerOetringerGoettsche2020, author = {D{\"u}mmler, Andreas and Oetringer, Kerstin and G{\"o}ttsche, Joachim}, title = {Auslegungstool zur energieeffizienten K{\"u}hlung von Geb{\"a}uden}, series = {DKV-Tagung 2020, AA IV}, booktitle = {DKV-Tagung 2020, AA IV}, pages = {1109}, year = {2020}, abstract = {Thematisch widmet sich das Projekt Coolplan- AIR der Fortentwicklung und Feldvalidierung eines Berechnungs- und Auslegungstools zur energieeffizienten K{\"u}hlung von Geb{\"a}uden mit luftgest{\"u}tzten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Der Schwerpunkt des Projekts liegt auf der Vermessung, Simulation und Integration rein luftgest{\"u}tzter K{\"u}hltechnologien. Im Bereich der K{\"a}lteerzeugung wurden Luft- Luft- W{\"a}rmepumpen, Anlagen zur adiabaten K{\"u}hlung bzw. offene K{\"u}hlt{\"u}rme und VRF- Multisplit- Systeme (Variable Refrigerant Flow) im Feld bzw. auf dem Teststand der HSD vermessen. Die Komponentenmodelle werden in die Matlab/Simulink- Toolbox CARNOT integriert und anschließend auf Basis der zuvor erhaltenen Messdaten validiert. Einerseits erlauben die Messungen das Betriebsverhalten von Anlagenkomponenten zu analysieren. Andererseits soll mit der Vermessung im Feld gepr{\"u}ft werden, inwieweit die Simulationsmodelle, welche im Vorg{\"a}ngerprojekt aus Pr{\"u}fstandmessungen entwickelt wurden, auch f{\"u}r gr{\"o}ßere Ger{\"a}teleistungen G{\"u}ltigkeit besitzen. Die entwickelten und implementierten Systeme, bestehend aus verschiedensten Anlagenmodellen und Regelungskomponenten, werden gepr{\"u}ft und dahingehend qualifiziert, dass sie in Standard- Auslegungstools zuverl{\"a}ssig verwendet werden k{\"o}nnen. Zus{\"a}tzlich wird ein energetisches Monitoring eines H{\"o}rsaalgeb{\"a}udes am Campus J{\"u}lich durchgef{\"u}hrt, das u. a. zur Validierung der K{\"u}hllastberechnungen in g{\"a}ngigen Simulationsmodelle genutzt werden kann.}, language = {de} } @inproceedings{RendonSchwagerGhiasietal.2020, author = {Rendon, Carlos and Schwager, Christian and Ghiasi, Mona and Schmitz, Pascal and Bohang, Fakhri and Chico Caminos, Ricardo Alexander and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029974}, pages = {170012-1 -- 170012-9}, year = {2020}, abstract = {A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 \% of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day.}, language = {en} } @inproceedings{FrantzBinderBuschetal.2020, author = {Frantz, Cathy and Binder, Matthias and Busch, Konrad and Ebert, Miriam and Heinrich, Andreas and Kaczmarkiewicz, Nadine and Schl{\"o}gl-Knothe, B{\"a}rbel and Kunze, Tobias and Schuhbauer, Christian and Stetka, Markus and Schwager, Christian and Spiegel, Michael and Teixeira Boura, Cristiano Jos{\´e} and Bauer, Thomas and Bonk, Alexander and Eisen, Stefan and Funck, Bernhard}, title = {Basic Engineering of a High Performance Molten Salt Tower Receiver System}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, doi = {10.1063/5.0085895}, pages = {1 -- 10}, year = {2020}, abstract = {The production of dispatchable renewable energy will be one of the most important key factors of the future energy supply. Concentrated solar power (CSP) plants operated with molten salt as heat transfer and storage media are one opportunity to meet this challenge. Due to the high concentration factor of the solar tower technology the maximum process temperature can be further increased which ultimately decreases the levelized costs of electricity of the technology (LCOE). The development of an improved tubular molten salt receiver for the next generation of molten salt solar tower plants is the aim of this work. The receiver is designed for a receiver outlet temperature up to 600 °C. Together with a complete molten salt system, the receiver will be integrated into the Multi-Focus-Tower (MFT) in J{\"u}lich (Germany). The paper describes the basic engineering of the receiver, the molten salt tower system and a laboratory corrosion setup.}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, abstract = {In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented.}, language = {en} } @article{ElMoussaouiTalbiAtmaneetal.2020, author = {El Moussaoui, Noureddine and Talbi, Sofian and Atmane, Ilyas and Kassmi, Khalil and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC)}, series = {Solar Energy}, volume = {201}, journal = {Solar Energy}, number = {Vol. 201 (May 2020)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X}, doi = {10.1016/j.solener.2020.03.079}, pages = {866 -- 871}, year = {2020}, abstract = {In this article, we describe the structure, the functioning, and the tests of parabolic trough solar thermal cooker (PSTC). This oven is designed to meet the needs of rural residents, including Urban, which requires stable cooking temperatures above 200 °C. The cooking by this cooker is based on the concentration of the sun's rays on a glass vacuum tube and heating of the oil circulate in a big tube, located inside the glass tube. Through two small tubes, associated with large tube, the heated oil, rise and heats the pot of cooking pot containing the food to be cooked (capacity of 5 kg). This cooker is designed in Germany and extensively tested in Morocco for use by the inhabitants who use wood from forests. During a sunny day, having a maximum solar radiation around 720 W/m2 and temperature ambient around 26 °C, maximum temperatures recorded of the small tube, the large tube and the center of the pot are respectively: 370 °C, 270 °C and 260 °C. The cooking process with food at high (fries, ..), we show that the cooking oil temperature rises to 200 °C, after 1 h of heating, the cooking is done at a temperature of 120 °C for 20 min. These temperatures are practically stable following variations and decreases in the intensity of irradiance during the day. The comparison of these results with those of the literature shows an improvement of 30-50 \% on the maximum value of the temperature with a heat storage that could reach 60 min of autonomy. All the results obtained show the good functioning of the PSTC and the feasibility of cooking food at high temperature (>200 °C).}, language = {en} } @article{RegerKuhnhenneEbbertetal.2020, author = {Reger, Vitali and Kuhnhenne, Markus and Ebbert, Thiemo and Hachul, Helmut and Blanke, Tobias and D{\"o}ring, Bernd}, title = {Nutzung erneuerbarer Energien durch thermische Aktivierung von Komponenten aus Stahl}, series = {Stahlbau}, volume = {2020}, journal = {Stahlbau}, number = {Volume 89, Issue 6512-519}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049}, doi = {10.1002/stab.202000031}, pages = {512 -- 519}, year = {2020}, abstract = {Die Versorgung von Neubauten soll m{\"o}glichst weitgehend unabh{\"a}ngig von fossilen Energietr{\"a}gern erfolgen. Erneuerbare Energien spielen daf{\"u}r eine gewichtige Rolle. Eine gute M{\"o}glichkeit, erneuerbare Energien ohne viel zus{\"a}tzlichen Aufwand nutzbar zu machen, ist, bereits vorhandenen Komponenten im Geb{\"a}ude zus{\"a}tzliche Funktionen zu geben. Hier kann bspw. die Fassade oder das Dach solarthermisch aktiviert oder durch Fotovoltaikmodule erg{\"a}nzt werden. Auch Tiefgr{\"u}ndungen k{\"o}nnen neben der statischen Funktion noch eine geothermische Funktion zur Aufnahme oder Abgabe von W{\"a}rme erhalten. Neben der Erzeugung bietet sich auch f{\"u}r die Verteilung der W{\"a}rme oder K{\"a}lte im Geb{\"a}ude die Integration in Bauteile an. Hier kann bspw. der Boden durch eine Fußbodenheizung oder die Decke durch Deckenstrahlplatten aktiviert werden. Im Rahmen der Ver{\"o}ffentlichung wird auf die thermische Aktivierung von Stahlkomponenten eingegangen. Es wird eine L{\"o}sung vorgestellt, die vorgeh{\"a}ngte hinterl{\"u}ftete Stahlfassade (VHF) solarthermisch zu aktivieren. Außerdem werden zwei M{\"o}glichkeiten zur geothermischen Aktivierung von Tiefgr{\"u}ndungen mittels Stahlpf{\"a}hlen gezeigt. Zuletzt wird ein System zur thermischen Aktivierung von Stahltrapezprofilen an der Decke erl{\"a}utert, welches W{\"a}rme zuf{\"u}hren oder bei Bedarf abf{\"u}hren kann.}, language = {de} }