@article{VogtIwanowskiStrahserMarquartetal.2013, author = {Vogt, Christian and Iwanowski-Strahser, Katha and Marquart, Gabriele and Arnold, Juliane and Mottaghy, Darius and Pechnig, Renate and Gnjezda, Daniel and Clauser, Christoph}, title = {Modeling contribution to risk assessment of thermal production power for geothermal reservoirs}, series = {Renewable Energy}, volume = {53}, journal = {Renewable Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0960-1481}, doi = {10.1016/j.renene.2012.11.026}, pages = {230 -- 241}, year = {2013}, language = {en} } @article{VogtMottaghyWolfetal.2010, author = {Vogt, C. and Mottaghy, Darius and Wolf, A. and Rath, V. and Pechnig, R. and Clauser, C.}, title = {Reducing temperature uncertainties by stochastic geothermal reservoir modelling}, series = {Geophysical Journal International}, volume = {181}, journal = {Geophysical Journal International}, number = {1}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1365-246X}, doi = {10.1111/j.1365-246X.2009.04498.x}, pages = {321 -- 333}, year = {2010}, abstract = {Quantifying and minimizing uncertainty is vital for simulating technically and economically successful geothermal reservoirs. To this end, we apply a stochastic modelling sequence, a Monte Carlo study, based on (i) creating an ensemble of possible realizations of a reservoir model, (ii) forward simulation of fluid flow and heat transport, and (iii) constraining post-processing using observed state variables. To generate the ensemble, we use the stochastic algorithm of Sequential Gaussian Simulation and test its potential fitting rock properties, such as thermal conductivity and permeability, of a synthetic reference model and—performing a corresponding forward simulation—state variables such as temperature. The ensemble yields probability distributions of rock properties and state variables at any location inside the reservoir. In addition, we perform a constraining post-processing in order to minimize the uncertainty of the obtained distributions by conditioning the ensemble to observed state variables, in this case temperature. This constraining post-processing works particularly well on systems dominated by fluid flow. The stochastic modelling sequence is applied to a large, steady-state 3-D heat flow model of a reservoir in The Hague, Netherlands. The spatial thermal conductivity distribution is simulated stochastically based on available logging data. Errors of bottom-hole temperatures provide thresholds for the constraining technique performed afterwards. This reduce the temperature uncertainty for the proposed target location significantly from 25 to 12 K (full distribution width) in a depth of 2300 m. Assuming a Gaussian shape of the temperature distribution, the standard deviation is 1.8 K. To allow a more comprehensive approach to quantify uncertainty, we also implement the stochastic simulation of boundary conditions and demonstrate this for the basal specific heat flow in the reservoir of The Hague. As expected, this results in a larger distribution width and hence, a larger, but more realistic uncertainty estimate. However, applying the constraining post-processing the uncertainty is again reduced to the level of the post-processing without stochastic boundary simulation. Thus, constraining post-processing is a suitable tool for reducing uncertainty estimates by observed state variables.}, language = {en} } @article{VogtMottaghyRathetal.2014, author = {Vogt, C. and Mottaghy, Darius and Rath, V. and Marquart, G. and Dijkshoorn, L. and Wolf, A. and Clauser, C.}, title = {Vertical variation in heat flow on the Kola Peninsula: palaeoclimate or fluid flow?}, series = {Geophysical Journal International}, volume = {199}, journal = {Geophysical Journal International}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1365-246X}, doi = {10.1093/gji/ggu282}, pages = {829 -- 843}, year = {2014}, abstract = {Following earlier studies, we present forward and inverse simulations of heat and fluid transport of the upper crust using a local 3-D model of the Kola area. We provide best estimates for palaeotemperatures and permeabilities, their errors and their dependencies. Our results allow discriminating between the two mentioned processes to a certain extent, partly resolving the non-uniqueness of the problem. We find clear indications for a significant contribution of advective heat transport, which, in turn, imply only slightly lower ground surface temperatures during the last glacial maximum relative to the present value. These findings are consistent with the general background knowledge of (i) the fracture zones and the corresponding fluid movements in the bedrock and (ii) the glacial history of the Kola area.}, language = {en} } @article{VlasovMourzinaLeginetal.2002, author = {Vlasov, Y. G. and Mourzina, Y. G. and Legin, A. V. and Ermelenko, Y. E. and Schubert, J. and Sch{\"o}ning, Michael Josef and L{\"u}th, H.}, title = {Solid-state thin film sensors based on chalcogenide materials prepared by planar technology and pulsed laser deposition}, series = {Russian Journal of Applied Chemistry. 75 (2002), H. 3}, journal = {Russian Journal of Applied Chemistry. 75 (2002), H. 3}, isbn = {1070-4272}, pages = {351 -- 356}, year = {2002}, language = {en} } @article{VitusevichFoersterReetzetal.2000, author = {Vitusevich, S. A. and F{\"o}rster, Arnold and Reetz, W. and L{\"u}th, H. and Belyaev, A. E. and Danylyuk, S. V.}, title = {Spectral Responsivity of single-quantum-well photodetectors}, series = {Applied Physics Letters. 77 (2000), H. 1}, journal = {Applied Physics Letters. 77 (2000), H. 1}, isbn = {1077-3118}, pages = {16 -- 18}, year = {2000}, language = {en} } @article{VitusevichFoersterReetzetal.2000, author = {Vitusevich, S. A. and F{\"o}rster, Arnold and Reetz, W. and L{\"u}th, H. and Belyaev, A. E. and Danylyuk, S. V.}, title = {Fine structure of photoresponse spectra in a double-barrier resonant tunnelling diode}, series = {Nanotechnology. 11 (2000), H. 4}, journal = {Nanotechnology. 11 (2000), H. 4}, isbn = {1361-6528}, pages = {305 -- 308}, year = {2000}, language = {en} } @article{VitusevichFoersterLuethetal.2001, author = {Vitusevich, S. A. and F{\"o}rster, Arnold and L{\"u}th, H. and Belyaev, A. E. and Danylyuk, S. V. and Konakova, R. V. and Sheka, D. I.}, title = {Resonant spectroscopy of electric-field-induced superlattices}, series = {Journal of Applied Physics. 90 (2001), H. 6}, journal = {Journal of Applied Physics. 90 (2001), H. 6}, isbn = {1089-7550}, doi = {10.1063/1.1392956}, pages = {2857 -- 2861}, year = {2001}, language = {en} } @article{VitusevichFoersterIndlekoferetal.2000, author = {Vitusevich, S. A. and F{\"o}rster, Arnold and Indlekofer, K.-M. and L{\"u}th, H. and Belyaev, A. E. and Glavin, B. A. and Konakova, R. V.}, title = {Tunneling Through X-Valley-Related Impurity States in GaAs/AlAs Resonant-Tunneling Diodes}, series = {Physical Review . B. 61 (2000), H. 16}, journal = {Physical Review . B. 61 (2000), H. 16}, isbn = {1550-235X}, pages = {10898 -- 10904}, year = {2000}, language = {en} } @article{VitiValeroGualtieri2019, author = {Viti, Nicolo and Valero, Daniel and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, issn = {2073-4441}, doi = {10.3390/w11010028}, pages = {Art. Nr. 28}, year = {2019}, language = {en} } @article{VieiradaSilvaSchwarzerHoffschmidtetal.2013, author = {Vieira da Silva, Maria Eugenia and Schwarzer, Klemens and Hoffschmidt, Bernhard and Pinheiro Rodrigues, Frederico and Schwarzer, Tarik and Costa Rocha, Paulo Alexandre}, title = {Mass transfer correlation for evaporation-condensation thermal process in the range of 70 °C-95 °C}, series = {Renewable energy}, volume = {Vol. 53}, journal = {Renewable energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-0682 (E-Journal); 0960-1481 (Print)}, pages = {174 -- 179}, year = {2013}, language = {en} } @article{VelrajSeenirajHafneretal.1997, author = {Velraj, R. and Seeniraj, R. V. and Hafner, B. and Faber, Christian and Schwarzer, Klemens}, title = {Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit}, series = {Solar energy. 60 (1997), H. 5}, journal = {Solar energy. 60 (1997), H. 5}, isbn = {0038-092X}, pages = {281 -- 290}, year = {1997}, language = {en} } @article{VelrajSeenirajHafneretal.1999, author = {Velraj, R. and Seeniraj, R. V. and Hafner, B. and Faber, Christian and Schwarzer, Klemens}, title = {Heat transfer enhancement in a latent heat storage system}, series = {Solar energy. Vol. 65, iss. 3}, journal = {Solar energy. Vol. 65, iss. 3}, issn = {0038-092X}, pages = {171 -- 180}, year = {1999}, language = {en} } @article{VargaDavinsonGloriusetal.2020, author = {Varga, Laszlo and Davinson, Thomas and Glorius, Jan and Jurado, Beatrix and Langer, Christoph and Lederer-Woods, Claudia and Litvinov, Yuri A. and Reifarth, Rene and Slavkovska, Zuzana and St{\"o}hlker, Thomas and Woods, Phil J. and Xing, Yuan Ming}, title = {Towards background-free studies of capture reaction in a heavy-ion storage ring}, series = {Journal of Physics: Conference Series}, volume = {1668}, journal = {Journal of Physics: Conference Series}, number = {Art 012046}, publisher = {IOP}, address = {Bristol}, year = {2020}, abstract = {Stored and cooled, highly-charged ions offer unprecedented capabilities for precision studies in the realm of atomic, nuclear structure and astrophysics[1]. After the successful investigation of the 96Ru(p,7)97Rh reaction cross section in 2009[2], the first measurement of the 124Xe(p,7)125Cs reaction cross section has been performed with decelerated, fully-ionized 124Xe ions in 2016 at the Experimental Storage Ring (ESR) of GSI[3]. Using a Double Sided Silicon Strip Detector, introduced directly into the ultra-high vacuum environment of a storage ring, the 125Cs proton-capture products have been successfully detected. The cross section has been measured at 5 different energies between 5.5AMeV and 8AMeV, on the high energy tail of the Gamow-window for hot, explosive scenarios such as supernovae and X-ray binaries. The elastic scattering on the H2 gas jet target is the major source of background to count the (p,7) events. Monte Carlo simulations show that an additional slit system in the ESR in combination with the energy information of the Si detector will enable background free measurements of the proton-capture products. The corresponding hardware is being prepared and will increase the sensitivity of the method tremendously.}, language = {en} } @article{VantStaatBaroud2008, author = {Vant, Christianne and Staat, Manfred and Baroud, Gamal}, title = {Percutaneous Vertebroplasty: A Review of Two Intraoperative Complications}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {527 -- 539}, year = {2008}, language = {en} } @article{ValeroVitiGualtieri2019, author = {Valero, Daniel and Viti, Nicolo and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11010036}, pages = {Art. Nr. 36}, year = {2019}, language = {en} } @article{ValeroSchalkoFriedrichetal.2021, author = {Valero, Daniel and Schalko, Isabella and Friedrich, Heide and Abad, Jorge D. and Bung, Daniel B. and Donchyts, Gennadii and Felder, Stefan and Ferreira, Rui M. L. and Hohermuth, Benjamin and Kramer, Matthias and Li, Danxun and Mendes, Luis and Moreno-Rodenas, Antonio and Nones, Michael and Paron, Paolo and Ruiz-Villanueva, Virginia and Wang, Ruo-Qian and Franca, Mario J.}, title = {Pathways towards democratization of hydro-environment observations and data}, series = {Iahr White Paper Series}, journal = {Iahr White Paper Series}, number = {1}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, pages = {1 -- 9}, year = {2021}, language = {en} } @article{ValeroChansonBung2019, author = {Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Robust estimators for turbulence properties assessment}, pages = {1 -- 24}, year = {2019}, language = {en} } @article{ValeroChansonBung2020, author = {Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Robust estimators for free surface turbulence characterization: A stepped spillway application}, series = {Flow Measurement and Instrumentation}, volume = {76}, journal = {Flow Measurement and Instrumentation}, number = {Art. 101809}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-5986}, doi = {10.1016/j.flowmeasinst.2020.101809}, year = {2020}, abstract = {Robust estimators are parameters insensitive to the presence of outliers. However, they presume the shape of the variables' probability density function. This study exemplifies the sensitivity of turbulent quantities to the use of classic and robust estimators and the presence of outliers in turbulent flow depth time series. A wide range of turbulence quantities was analysed based upon a stepped spillway case study, using flow depths sampled with Acoustic Displacement Meters as the flow variable of interest. The studied parameters include: the expected free surface level, the expected fluctuation intensity, the depth skewness, the autocorrelation timescales, the vertical velocity fluctuation intensity, the perturbations celerity and the one-dimensional free surface turbulence spectrum. Three levels of filtering were utilised prior to applying classic and robust estimators, showing that comparable robustness can be obtained either using classic estimators together with an intermediate filtering technique or using robust estimators instead, without any filtering technique.}, language = {en} } @article{ValeroBungErpicumetal.2022, author = {Valero, Daniel and Bung, Daniel B. and Erpicum, Sebastien and Peltier, Yann and Dewals, Benjamin}, title = {Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling}, series = {Journal of Hydro-environment Research}, journal = {Journal of Hydro-environment Research}, number = {In Press}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2022.03.002}, year = {2022}, abstract = {Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).}, language = {en} } @article{ValeroBungCrookston2018, author = {Valero, Daniel and Bung, Daniel B. and Crookston, B.M.}, title = {Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001482}, year = {2018}, abstract = {New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin's performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein.}, language = {en} }