@article{MolinnusDrinicIkenetal.2021, author = {Molinnus, Denise and Drinic, Aleksander and Iken, Heiko and Kr{\"o}ger, Nadja and Zinser, Max and Smeets, Ralf and K{\"o}pf, Marius and Kopp, Alexander and Sch{\"o}ning, Michael Josef}, title = {Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk}, series = {Biosensors and Bioelectronics}, volume = {183}, journal = {Biosensors and Bioelectronics}, number = {Art. 113204}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2021.113204}, year = {2021}, language = {en} } @article{SchoeningArzdorfMulchandanietal.2003, author = {Sch{\"o}ning, Michael Josef and Arzdorf, M. and Mulchandani, P. and Chen, W. and Mulchandani, A.}, title = {Towards a capacitive enzyme sensor for direct determination of organophosphorus pesticides: Fundamentals studies and aspects of development}, series = {Sensors. 3 (2003), H. 6}, journal = {Sensors. 3 (2003), H. 6}, isbn = {1424-8220}, pages = {119 -- 127}, year = {2003}, language = {en} } @article{OberlaenderBrommWendeleretal.2015, author = {Oberl{\"a}nder, Jan and Bromm, Alexander and Wendeler, Luisa and Iken, Heiko and Palomar Duran, Marlena and Greeff, Anton and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431900}, pages = {1299 -- 1305}, year = {2015}, abstract = {Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected.}, language = {en} } @article{TakenagaBiselliSchnitzleretal.2014, author = {Takenaga, Shoko and Biselli, Manfred and Schnitzler, Thomas and {\"O}hlschl{\"a}ger, Peter and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Toward multi-analyte bioarray sensors: LAPS-based on-chip determination of a Michaelis-Menten-like kinetics for cell culturing}, series = {Physica status solidi A : Applications and materials science}, volume = {211}, journal = {Physica status solidi A : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330464}, pages = {1410 -- 1415}, year = {2014}, abstract = {The metabolic activity of Chinese hamster ovary (CHO) cells was observed using a light-addressable potentiometric sensor (LAPS). The dependency toward different glucose concentrations (17-200 mM) follows a Michaelis-Menten kinetics trajectory with Kₘ = 32.8 mM, and the obtained Kₘ value in this experiment was compared with that found in literature. In addition, the pH shift induced by glucose metabolism of tumor cells transfected with the HPV-16 genome (C3 cells) was successfully observed. These results indicate the possibility to determine the tumor cells metabolism with a LAPS-based measurement device.}, language = {en} } @article{ArreolaKeusgenSchoening2019, author = {Arreola, Julio and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Toward an immobilization method for spore-based biosensors in oxidative environment}, series = {Electrochimica Acta}, volume = {302}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.electacta.2019.01.148}, pages = {394 -- 401}, year = {2019}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{BaeckerKochEibenetal.2017, author = {B{\"a}cker, Matthias and Koch, Claudia and Eiben, Sabine and Geiger, Fania and Eber, Fabian and Gliemann, Hartmut and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors}, series = {Sensors and Actuators B: Chemical}, volume = {238}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.07.096}, pages = {716 -- 722}, year = {2017}, abstract = {The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips.}, language = {en} } @article{KirchnerLiSpelthahnetal.2009, author = {Kirchner, Patrick and Li, B. and Spelthahn, H. and Henkel, H. and Friedrich, P. and Kolstad, J. and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Thin-film calorimetric H2O2 gas sensor for the validation of germicidal effectivity in aseptic filling processes}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, isbn = {1876-6196}, pages = {983 -- 986}, year = {2009}, language = {en} } @article{KirchnerLiSpelthahnetal.2011, author = {Kirchner, Patrick and Li, Bin and Spelthahn, Heiko and Henkel, Hartmut and Schneider, Andreas and Friedrich, Peter and Kolstad, Jens and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Thin-film calorimetric H2O2 gas sensor for the validation of germicidal effectivity in aseptic filling processes}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {257 -- 263}, year = {2011}, language = {en} } @article{SchoeningSchmidtSchubertetal.2000, author = {Sch{\"o}ning, Michael Josef and Schmidt, C. and Schubert, J. and Zander, W. and Mesters, S. and Kordos, P. and L{\"u}th, H. and Legin, A. and Seleznev, B. and Vlasov, Y. G.}, title = {Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique}, series = {Sensors and Actuators B. 68 (2000), H. 1-3}, journal = {Sensors and Actuators B. 68 (2000), H. 1-3}, isbn = {0925-4005}, pages = {254 -- 259}, year = {2000}, language = {en} } @article{SchoeningSchmidtSchubertetal.1999, author = {Sch{\"o}ning, Michael Josef and Schmidt, C. and Schubert, J. and Zander, W. and Kordos, P. and L{\"u}th, H. and Legin, A. and Seleznev, B. and Vlasov, Y. G.}, title = {Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique}, series = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, journal = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, address = {The Hague, The Netherlands}, isbn = {90-76699-02-X}, pages = {847 -- 850}, year = {1999}, language = {en} } @article{MourzinaSchoeningSchubertetal.2000, author = {Mourzina, Yu.G. and Sch{\"o}ning, Michael Josef and Schubert, J. and Zander, W. and Legin, A. and Vlasov, Y. G. and L{\"u}th, H.}, title = {Thin film microsensors for fast heavy metal analysis}, series = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, journal = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, publisher = {MIC, Mikroelektronik Centret}, address = {Lyngby, Denmark}, isbn = {87-89935-50-0}, pages = {839 -- 840}, year = {2000}, language = {en} } @article{SchoeningGlueckKordosetal.1999, author = {Sch{\"o}ning, Michael Josef and Gl{\"u}ck, O. and Kordos, P. and L{\"u}th, H. and Emons, H.}, title = {Thin film electrodes for trace metal analysis by dc resistance changes}, series = {Proceedings of SPIE. 3857 (1999)}, journal = {Proceedings of SPIE. 3857 (1999)}, pages = {135 -- 143}, year = {1999}, language = {en} } @article{MourzinaLeginVlasovetal.2001, author = {Mourzina, Y. G. and Legin, A. and Vlasov, Y. G. and Sch{\"o}ning, Michael Josef and Schubert, J. and Zander, W. and L{\"u}th, H.}, title = {Thin film chemical sensors based on chalcogenide glasses for „electronic tongue" applications}, series = {Sensor 2001 : 10th international conference, May 8 - 10, 2001, Exhibition Centre Nuremberg, Germany ; proceedings}, journal = {Sensor 2001 : 10th international conference, May 8 - 10, 2001, Exhibition Centre Nuremberg, Germany ; proceedings}, publisher = {AMA Service}, address = {Wunstorf}, pages = {137 -- 141}, year = {2001}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Thermocatalytic Behavior of Manganese (IV) Oxide as Nanoporous Material on the Dissociation of a Gas Mixture Containing Hydrogen Peroxide}, series = {Nanomaterials}, volume = {8}, journal = {Nanomaterials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano8040262}, pages = {Artikel 262}, year = {2018}, abstract = {In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H₂O₂) gas on a manganese (IV) oxide (MnO₂) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H₂O₂ gas sensor based on porous MnO₂. Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H₂O₂ dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO₂ catalyst.}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Theoretical study and simulation of light-addressable potentiometric sensors}, series = {Physica status solidi (A) : applications and materials}, volume = {211}, journal = {Physica status solidi (A) : applications and materials}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201330354}, pages = {1467 -- 1472}, year = {2014}, abstract = {The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance.}, language = {en} } @article{SchoeningSchrothSchuetz2000, author = {Sch{\"o}ning, Michael Josef and Schroth, P. and Sch{\"u}tz, S.}, title = {The use of insect chemoreceptors for the assembly of biosensors based on semiconductor field-effect sensors}, series = {Electroanalysis. 12 (2000), H. 9}, journal = {Electroanalysis. 12 (2000), H. 9}, isbn = {1040-0397}, pages = {645 -- 652}, year = {2000}, language = {en} } @article{YoshinobuIwasakiUietal.2005, author = {Yoshinobu, T. and Iwasaki, H. and Ui, Y. and Furuichi, K. and Ermelenko, Y. and Mourzina, Y. and Wagner, Torsten and N{\"a}ther, Niko and Sch{\"o}ning, Michael Josef}, title = {The light-addressable potentiometric sensor for multi-ion sensing and imaging}, series = {Methods. 37 (2005), H. 1}, journal = {Methods. 37 (2005), H. 1}, isbn = {1046-2023}, pages = {99 -- 102}, year = {2005}, language = {en} } @article{ErmelenkoYoshinobuMourzinaetal.2002, author = {Ermelenko, Y. and Yoshinobu, T. and Mourzina, Y. and Sch{\"o}ning, Michael Josef and Vlasov, Y. and Iwasaki, H.}, title = {The hybrid K+/Ca2+ sensor based on laser scanned silicon transducer for multi-component analysis}, series = {Proceedings of ICAS 2001, IUPAC [3rd] International Congress on Analytical Sciences 2001 : August 6 - 10, 2001, Waseda University, Tokyo}, journal = {Proceedings of ICAS 2001, IUPAC [3rd] International Congress on Analytical Sciences 2001 : August 6 - 10, 2001, Waseda University, Tokyo}, publisher = {Japan Society for Analytical Chemistry}, address = {Tokyo}, pages = {i777 -- i780}, year = {2002}, language = {en} } @article{RiemerSchrothSchuetzetal.2000, author = {Riemer, A. and Schroth, P. and Sch{\"u}tz, S. and Hummel, Hans E. and L{\"u}th, H. and Kohl, C.-D. and Sch{\"o}ning, Michael Josef}, title = {The future of fire detection: Biological sensors? - Die Zukunft der Brandgassensorik: Biologische Sensoren?}, series = {Gassensorik in der Brandmeldetechnik : [VdS-Fachtagung, am 15. und 16. November 2000 in K{\"o}ln] = Gas sensors for fire detection / VdS Schadenverh{\"u}tung}, journal = {Gassensorik in der Brandmeldetechnik : [VdS-Fachtagung, am 15. und 16. November 2000 in K{\"o}ln] = Gas sensors for fire detection / VdS Schadenverh{\"u}tung}, publisher = {VdS Schadenverh{\"u}tung}, address = {K{\"o}ln}, pages = {1 -- 7}, year = {2000}, language = {en} }