@incollection{OsterhageBialonskiStanieketal.2008, author = {Osterhage, Hannes and Bialonski, Stephan and Staniek, Matth{\"a}us and Schindler, Kaspar and Wagner, Tobias and Elger, Christian E. and Lehnertz, Klaus}, title = {Bivariate and multivariate time series analysis techniques and their potential impact for seizure prediction}, series = {Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications}, booktitle = {Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {978-3-527-62519-2}, doi = {10.1002/9783527625192.ch15}, pages = {189 -- 208}, year = {2008}, language = {en} } @article{LehnertzBialonskiHorstmannetal.2009, author = {Lehnertz, Klaus and Bialonski, Stephan and Horstmann, Marie-Therese and Krug, Dieter and Rothkegel, Alexander and Staniek, Matth{\"a}us and Wagner, Tobias}, title = {Synchronization phenomena in human epileptic brain networks}, series = {Journal of neuroscience methods}, volume = {183}, journal = {Journal of neuroscience methods}, number = {1}, issn = {0165-0270}, doi = {10.1016/j.jneumeth.2009.05.015}, pages = {42 -- 48}, year = {2009}, language = {en} } @incollection{LehnertzBialonskiHorstmannetal.2010, author = {Lehnertz, Klaus and Bialonski, Stephan and Horstmann, Marie-Therese and Krug, Dieter and Rothkegel, Alexander and Staniek, Matth{\"a}us and Wagner, Tobias}, title = {Epilepsy}, series = {Reviews of Nonlinear Dynamics and Complexity, Volume 2}, booktitle = {Reviews of Nonlinear Dynamics and Complexity, Volume 2}, publisher = {Wiley-VCH}, isbn = {9783527628001}, doi = {10.1002/9783527628001.ch5}, pages = {159 -- 200}, year = {2010}, language = {en} } @article{HorstmannBialonskiNoenningetal.2010, author = {Horstmann, Marie-Therese and Bialonski, Stephan and Noenning, Nina and Mai, Heinke and Prusseit, Jens and Wellmer, J{\"o}rg and Hinrichs, Hermann and Lehnertz, Klaus}, title = {State dependent properties of epileptic brain networks: Comparative graph-theoretical analyses of simultaneously recorded EEG and MEG}, series = {Clinical Neurophysiology}, volume = {121}, journal = {Clinical Neurophysiology}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1388-2457}, doi = {10.1016/j.clinph.2009.10.013}, pages = {172 -- 185}, year = {2010}, abstract = {Objective To investigate whether functional brain networks of epilepsy patients treated with antiepileptic medication differ from networks of healthy controls even during the seizure-free interval. Methods We applied different rules to construct binary and weighted networks from EEG and MEG data recorded under a resting-state eyes-open and eyes-closed condition from 21 epilepsy patients and 23 healthy controls. The average shortest path length and the clustering coefficient served as global statistical network characteristics. Results Independent on the behavioral condition, epileptic brains exhibited a more regular functional network structure. Similarly, the eyes-closed condition was characterized by a more regular functional network structure in both groups. The amount of network reorganization due to behavioral state changes was similar in both groups. Consistent findings could be achieved for networks derived from EEG but hardly from MEG recordings, and network construction rules had a rather strong impact on our findings. Conclusions Despite the locality of the investigated processes epileptic brain networks differ in their global characteristics from non-epileptic brain networks. Further methodological developments are necessary to improve the characterization of disturbed and normal functional networks. Significance An increased regularity and a diminished modulation capability appear characteristic of epileptic brain networks.}, language = {en} } @article{BialonskiHorstmannLehnertz2010, author = {Bialonski, Stephan and Horstmann, Marie-Therese and Lehnertz, Klaus}, title = {From brain to earth and climate systems: Small-world interaction networks or not?}, series = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, volume = {20}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, number = {1}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {1089-7682}, doi = {10.1063/1.3360561}, pages = {013134}, year = {2010}, abstract = {We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations, we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with the commonly used time series analysis based approaches to network characterization.}, language = {en} } @incollection{Bialonski2016, author = {Bialonski, Stephan}, title = {Are interaction clusters in epileptic networks predictive of seizures?}, series = {Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Engineering, and Physics}, booktitle = {Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Engineering, and Physics}, publisher = {CRC Press}, isbn = {978-143983886-0}, pages = {349 -- 355}, year = {2016}, language = {en} } @article{BialonskiWendlerLehnertz2011, author = {Bialonski, Stephan and Wendler, Martin and Lehnertz, Klaus}, title = {Unraveling spurious properties of interaction networks with tailored random networks}, series = {Plos one}, volume = {6}, journal = {Plos one}, number = {8}, publisher = {Plos}, address = {San Francisco}, doi = {10.1371/journal.pone.0022826}, pages = {e22826}, year = {2011}, abstract = {We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erd{\"o}s-R{\´e}nyi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures - known for their complex spatial and temporal dynamics - we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.}, language = {en} } @book{Bialonski2012, author = {Bialonski, Stephan}, title = {Inferring complex networks from time series of dynamical systems: Pitfalls, misinterpretations, and possible solutions}, publisher = {Universit{\"a}ts- und Landesbibliothek Bonn}, address = {Bonn}, pages = {Online-Ausgabe (III, 135 S. : Ill., graph. Darst.)}, year = {2012}, language = {en} } @incollection{BialonskiLehnertz2013, author = {Bialonski, Stephan and Lehnertz, Klaus}, title = {From time series to complex networks: an overview}, series = {Recent Advances in Predicting and Preventing Epileptic Seizures: Proceedings of the 5th International Workshop on Seizure Prediction}, booktitle = {Recent Advances in Predicting and Preventing Epileptic Seizures: Proceedings of the 5th International Workshop on Seizure Prediction}, isbn = {978-981-4525-36-7}, doi = {10.1142/9789814525350_0010}, pages = {132 -- 147}, year = {2013}, abstract = {The network approach towards the analysis of the dynamics of complex systems has been successfully applied in a multitude of studies in the neurosciences and has yielded fascinating insights. With this approach, a complex system is considered to be composed of different constituents which interact with each other. Interaction structures can be compactly represented in interaction networks. In this contribution, we present a brief overview about how interaction networks are derived from multivariate time series, about basic network characteristics, and about challenges associated with this analysis approach.}, language = {en} } @article{BialonskiLehnertz2013, author = {Bialonski, Stephan and Lehnertz, Klaus}, title = {Assortative mixing in functional brain networks during epileptic seizures}, series = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, volume = {23}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, number = {3}, doi = {10.1063/1.4821915}, pages = {033139}, year = {2013}, language = {en} } @article{KuhnertBialonskiNoenningetal.2013, author = {Kuhnert, Marie-Therese and Bialonski, Stephan and Noenning, Nina and Mai, Heinke and Hinrichs, Hermann and Helmstaedter, Christoph and Lehnertz, Klaus}, title = {Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks}, series = {Plos one}, volume = {8}, journal = {Plos one}, number = {11}, publisher = {PLOS}, address = {San Francisco}, doi = {10.1371/journal.pone.0080273}, pages = {e80273}, year = {2013}, abstract = {Learning- and memory-related processes are thought to result from dynamic interactions in large-scale brain networks that include lateral and mesial structures of the temporal lobes. We investigate the impact of incidental and intentional learning of verbal episodic material on functional brain networks that we derive from scalp-EEG recorded continuously from 33 subjects during a neuropsychological test schedule. Analyzing the networks' global statistical properties we observe that intentional but not incidental learning leads to a significantly increased clustering coefficient, and the average shortest path length remains unaffected. Moreover, network modifications correlate with subsequent recall performance: the more pronounced the modifications of the clustering coefficient, the higher the recall performance. Our findings provide novel insights into the relationship between topological aspects of functional brain networks and higher cognitive functions.}, language = {en} } @article{LehnertzAnsmannBialonskietal.2014, author = {Lehnertz, Klaus and Ansmann, Gerrit and Bialonski, Stephan and Dickten, Henning and Geier, Christian and Porz, Stephan}, title = {Evolving networks in the human epileptic brain}, series = {Physica D: Nonlinear Phenomena}, volume = {267}, journal = {Physica D: Nonlinear Phenomena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-2789}, doi = {10.1016/j.physd.2013.06.009}, pages = {7 -- 15}, year = {2014}, abstract = {Network theory provides novel concepts that promise an improved characterization of interacting dynamical systems. Within this framework, evolving networks can be considered as being composed of nodes, representing systems, and of time-varying edges, representing interactions between these systems. This approach is highly attractive to further our understanding of the physiological and pathophysiological dynamics in human brain networks. Indeed, there is growing evidence that the epileptic process can be regarded as a large-scale network phenomenon. We here review methodologies for inferring networks from empirical time series and for a characterization of these evolving networks. We summarize recent findings derived from studies that investigate human epileptic brain networks evolving on timescales ranging from few seconds to weeks. We point to possible pitfalls and open issues, and discuss future perspectives.}, language = {en} } @article{GeierBialonskiElgeretal.2015, author = {Geier, Christian and Bialonski, Stephan and Elger, Christian E. and Lehnertz, Klaus}, title = {How important is the seizure onset zone for seizure dynamics?}, series = {Seizure}, volume = {25}, journal = {Seizure}, issn = {1059-1311}, doi = {10.1016/j.seizure.2014.10.013}, pages = {160 -- 166}, year = {2015}, language = {en} } @article{GeierLehnertzBialonski2015, author = {Geier, Christian and Lehnertz, Klaus and Bialonski, Stephan}, title = {Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing}, series = {Frontiers in Human Neuroscience}, journal = {Frontiers in Human Neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2015.00462}, year = {2015}, language = {en} } @article{MulhernBialonskiKantz2015, author = {Mulhern, Colm and Bialonski, Stephan and Kantz, Holger}, title = {Extreme events due to localization of energy}, series = {Physical Review E}, volume = {91}, journal = {Physical Review E}, number = {1}, issn = {2470-0053}, doi = {10.1103/PhysRevE.91.012918}, pages = {012918}, year = {2015}, language = {en} } @article{BialonskiAnsmannKantz2015, author = {Bialonski, Stephan and Ansmann, Gerrit and Kantz, Holger}, title = {Data-driven prediction and prevention of extreme events in a spatially extended excitable system}, series = {Physical Review E}, volume = {92}, journal = {Physical Review E}, number = {4}, issn = {2470-0053}, doi = {10.1103/PhysRevE.92.042910}, pages = {042910}, year = {2015}, language = {en} } @article{BialonskiCaronSchloenetal.2016, author = {Bialonski, Stephan and Caron, David A. and Schloen, Julia and Feudel, Ulrike and Kantz, Holger and Moorthi, Stefanie D.}, title = {Phytoplankton dynamics in the Southern California Bight indicate a complex mixture of transport and biology}, series = {Journal of Plankton Research}, volume = {38}, journal = {Journal of Plankton Research}, number = {4}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1464-3774}, doi = {10.1093/plankt/fbv122}, pages = {1077 -- 1091}, year = {2016}, abstract = {The stimulation and dominance of potentially harmful phytoplankton taxa at a given locale and time are determined by local environmental conditions as well as by transport to or from neighboring regions. The present study investigated the occurrence of common harmful algal bloom (HAB) taxa within the Southern California Bight, using cross-correlation functions to determine potential dependencies between HAB taxa and environmental factors, and potential links to algal transport via local hydrography and currents. A simulation study, in which Lagrangian particles were released, was used to assess travel times due to advection by prevailing ocean currents in the bight. Our results indicate that transport of some taxa may be an important mechanism for the expansion of their distributions into other regions, which was supported by mean travel times derived from our simulation study and other literature on ocean currents in the Southern California Bight. In other cases, however, phytoplankton dynamics were rather linked to local environmental conditions, including coastal upwelling events. Overall, our study shows that complex current patterns in the Southern California Bight may contribute significantly to the formation and expansion of HABs in addition to local environmental factors determining the spatiotemporal dynamics of phytoplankton blooms.}, language = {en} } @article{NgamgaBialonskiMarwanetal.2016, author = {Ngamga, Eulalie Joelle and Bialonski, Stephan and Marwan, Norbert and Kurths, J{\"u}rgen and Geier, Christian and Lehnertz, Klaus}, title = {Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data}, series = {Physics Letters A}, volume = {380}, journal = {Physics Letters A}, number = {16}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-9601}, doi = {10.1016/j.physleta.2016.02.024}, pages = {1419 -- 1425}, year = {2016}, abstract = {We investigate the suitability of selected measures of complexity based on recurrence quantification analysis and recurrence networks for an identification of pre-seizure states in multi-day, multi-channel, invasive electroencephalographic recordings from five epilepsy patients. We employ several statistical techniques to avoid spurious findings due to various influencing factors and due to multiple comparisons and observe precursory structures in three patients. Our findings indicate a high congruence among measures in identifying seizure precursors and emphasize the current notion of seizure generation in large-scale epileptic networks. A final judgment of the suitability for field studies, however, requires evaluation on a larger database.}, language = {en} } @article{KarnatakKantzBialonski2017, author = {Karnatak, Rajat and Kantz, Holger and Bialonski, Stephan}, title = {Early warning signal for interior crises in excitable systems}, series = {Physical Review E}, volume = {96}, journal = {Physical Review E}, number = {4}, issn = {2470-0053}, doi = {10.1103/PhysRevE.96.042211}, pages = {042211}, year = {2017}, language = {en} } @article{SchwabedalSippelBrandtetal.2018, author = {Schwabedal, Justus T. C. and Sippel, Daniel and Brandt, Moritz D. and Bialonski, Stephan}, title = {Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning}, doi = {10.48550/arXiv.1809.08443}, year = {2018}, abstract = {Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven f ield. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifactfree or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle.}, language = {en} }