@article{ZabirovSchleserBucherer2021, author = {Zabirov, Alexander and Schleser, Markus and Bucherer, Sebastian}, title = {F{\"u}ge- und Dichtkonzept f{\"u}r einen Leichtbauverbrennungsmotor}, series = {adh{\"a}sion KLEBEN \& DICHTEN}, volume = {65}, journal = {adh{\"a}sion KLEBEN \& DICHTEN}, number = {11}, publisher = {Springer Nature}, address = {Cham}, issn = {2192-8681}, doi = {10.1007/s35145-021-0531-5}, pages = {12 -- 19}, year = {2021}, language = {de} } @inproceedings{AdenackerGerhardsOttenetal.2021, author = {Adenacker, J. and Gerhards, Benjamin and Otten, Christian and Schleser, Markus}, title = {Laserstrahlschweißen von Aluminium-Kupfer-Werkstoffkombinationen f{\"u}r die Elektromobilit{\"a}t}, series = {DVS CONGRESS 2021}, booktitle = {DVS CONGRESS 2021}, publisher = {DVS Media GmbH}, address = {D{\"u}sseldorf}, isbn = {978-3-96144-146-4}, pages = {31 -- 38}, year = {2021}, language = {de} } @article{BraunChengDoweyetal.2021, author = {Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Performance evaluation of skill-based order-assignment in production environments with multi-agent systems}, series = {IEEE Journal of Emerging and Selected Topics in Industrial Electronics}, journal = {IEEE Journal of Emerging and Selected Topics in Industrial Electronics}, number = {Early Access}, publisher = {IEEE}, address = {New York}, issn = {2687-9735}, doi = {10.1109/JESTIE.2021.3108524}, year = {2021}, abstract = {The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models.}, language = {en} } @article{KaschSchmidtJahnetal.2021, author = {Kasch, Susanne and Schmidt, Thomas and Jahn, Simon and Eichler, Fabian and Thurn, Laura and Bremen, Sebastian}, title = {L{\"o}sungsans{\"a}tze und Verfahrenskonzepte zum Laserstrahlschmelzen von Glas}, series = {Schweissen und Schneiden}, volume = {73}, journal = {Schweissen und Schneiden}, number = {Heft 1-2}, publisher = {DVS Verlag}, address = {D{\"u}sseldorf}, isbn = {0036-7184}, pages = {32 -- 39}, year = {2021}, language = {de} } @inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @book{Schmidt2019, author = {Schmidt, Bernd}, title = {Grundlagen der Elektrotechnik und Elektronik f{\"u}r Ingenieure der Schienenfahrzeugtechnik und anderer Fachrichtungen : neu mit neuem SI-System und weiteren Inhalten f{\"u}r Mechantroniker}, edition = {3. vollst{\"a}ndig {\"u}berarbeitete Auflage}, publisher = {B. Schmidt, Fachverlag f{\"u}r Elektro- und Informationstechnik}, address = {Bielefeld}, isbn = {978-3-944131-04-7}, pages = {XXVI, 270 Seiten : Illustrationen, Diagramme}, year = {2019}, language = {de} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Simulation und Verifikation komplexer Handarbeitsprozesse durch die Kombination von Virtual Reality und Augmented Reality im Single-Piece-Workflow}, series = {Tagungsband: AALE 2020}, booktitle = {Tagungsband: AALE 2020}, isbn = {978-3-8007-5180-8}, pages = {4 Seiten}, year = {2020}, language = {de} } @article{EngemannDuKallweitetal.2020, author = {Engemann, Heiko and Du, Shengzhi and Kallweit, Stephan and C{\"o}nen, Patrick and Dawar, Harshal}, title = {OMNIVIL - an autonomous mobile manipulator for flexible production}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {24, art. no. 7249}, publisher = {MDPI}, address = {Basel}, isbn = {1424-8220}, doi = {10.3390/s20247249}, pages = {1 -- 30}, year = {2020}, language = {en} } @incollection{EngemannDuKallweitetal.2020, author = {Engemann, Heiko and Du, Shengzhi and Kallweit, Stephan and Ning, Chuanfang and Anwar, Saqib}, title = {AutoSynPose: Automatic Generation of Synthetic Datasets for 6D Object Pose Estimation}, series = {Machine Learning and Artificial Intelligence. Proceedings of MLIS 2020}, booktitle = {Machine Learning and Artificial Intelligence. Proceedings of MLIS 2020}, publisher = {IOS Press}, address = {Amsterdam}, isbn = {978-1-64368-137-5}, doi = {10.3233/FAIA200770}, pages = {89 -- 97}, year = {2020}, abstract = {We present an automated pipeline for the generation of synthetic datasets for six-dimension (6D) object pose estimation. Therefore, a completely automated generation process based on predefined settings is developed, which enables the user to create large datasets with a minimum of interaction and which is feasible for applications with a high object variance. The pipeline is based on the Unreal 4 (UE4) game engine and provides a high variation for domain randomization, such as object appearance, ambient lighting, camera-object transformation and distractor density. In addition to the object pose and bounding box, the metadata includes all randomization parameters, which enables further studies on randomization parameter tuning. The developed workflow is adaptable to other 3D objects and UE4 environments. An exemplary dataset is provided including five objects of the Yale-CMU-Berkeley (YCB) object set. The datasets consist of 6 million subsegments using 97 rendering locations in 12 different UE4 environments. Each dataset subsegment includes one RGB image, one depth image and one class segmentation image at pixel-level.}, language = {en} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamified Virtual Reality Training Environment for the Manufacturing Industry}, series = {Proceedings of the 2020 19th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {Proceedings of the 2020 19th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/ME49197.2020.9286661}, pages = {1 -- 6}, year = {2020}, abstract = {Industry 4.0 imposes many challenges for manufacturing companies and their employees. Innovative and effective training strategies are required to cope with fast-changing production environments and new manufacturing technologies. Virtual Reality (VR) offers new ways of on-the-job, on-demand, and off-premise training. A novel concept and evaluation system combining Gamification and VR practice for flexible assembly tasks is proposed in this paper and compared to existing works. It is based on directed acyclic graphs and a leveling system. The concept enables a learning speed which is adjustable to the users' pace and dynamics, while the evaluation system facilitates adaptive work sequences and allows employee-specific task fulfillment. The concept was implemented and analyzed in the Industry 4.0 model factory at FH Aachen for mechanical assembly jobs.}, language = {de} } @incollection{FateriGebhardt2020, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Introduction to Additive Manufacturing}, series = {3D Printing of Optical Components}, booktitle = {3D Printing of Optical Components}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-58960-8}, doi = {10.1007/978-3-030-58960-8_1}, pages = {1 -- 22}, year = {2020}, abstract = {Additive manufacturing (AM) works by creating objects layer by layer in a manner similar to a 2D printer with the "printed" layers stacked on top of each other. The layer-wise manufacturing nature of AM enables fabrication of freeform geometries which cannot be fabricated using conventional manufacturing methods as a one part. Depending on how each layer is created and bonded to the adjacent layers, different AM methods have been developed. In this chapter, the basic terms, common materials, and different methods of AM are described, and their potential applications are discussed.}, language = {en} } @inproceedings{ChavezBermudezWollert2020, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {Arduino based Framework for Rapid Application Development of a Generic IO-Link interface}, series = {Kommunikation und Bildverarbeitung in der Automation. Ausgew{\"a}hlte Beitr{\"a}ge der Jahreskolloquien KommA und BVAu 2018}, booktitle = {Kommunikation und Bildverarbeitung in der Automation. Ausgew{\"a}hlte Beitr{\"a}ge der Jahreskolloquien KommA und BVAu 2018}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-59895-5}, doi = {10.1007/978-3-662-59895-5_2}, pages = {21 -- 33}, year = {2020}, abstract = {The implementation of IO-Link in the automation industry has increased over the years. Its main advantage is it offers a digital point-to-point plugand-play interface for any type of device or application. This simplifies the communication between devices and increases productivity with its different features like self-parametrization and maintenance. However, its complete potential is not always used. The aim of this paper is to create an Arduino based framework for the development of generic IO-Link devices and increase its implementation for rapid prototyping. By generating the IO device description file (IODD) from a graphical user interface, and further customizable options for the device application, the end-user can intuitively develop generic IO-Link devices. The peculiarity of this framework relies on its simplicity and abstraction which allows to implement any sensor functionality and virtually connect any type of device to an IO-Link master. This work consists of the general overview of the framework, the technical background of its development and a proof of concept which demonstrates the workflow for its implementation.}, language = {en} } @incollection{GebhardtHoetter2019, author = {Gebhardt, Andreas and Hoetter, Jan-Steffen}, title = {Rapid Tooling}, series = {CIRP Encyclopedia of Production Engineering}, booktitle = {CIRP Encyclopedia of Production Engineering}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-53120-4}, doi = {10.1007/978-3-662-53120-4}, pages = {39 -- 52}, year = {2019}, language = {en} } @article{UlmerGroeningerBraunetal.2020, author = {Ulmer, Jessica and Gr{\"o}ninger, Marc and Braun, Sebastian and Wollert, J{\"o}rg}, title = {AR Arbeitspl{\"a}tze: F{\"u}r hochflexible und skalierbare Produktionsumgebungen}, series = {atp Magazin}, volume = {62}, journal = {atp Magazin}, number = {10}, publisher = {Vulkan-Verlag}, address = {Essen}, issn = {2364-3137}, doi = {10.17560/atp.v62i10.2495}, year = {2020}, abstract = {Trotz fortschreitender Automatisierung bleiben manuelle T{\"a}tigkeiten ein wichtiger Baustein der Fertigung kundenindividueller Produkte. Um die Mitarbeiter(innen) zu unterst{\"u}tzen und um eine effiziente Arbeit zu erm{\"o}glichen, werden zunehmend auf Augmented Reality (AR) basierende Systeme eingesetzt. Die vorgestellte Arbeit konzentriert sich auf die Entwicklung ganzheitlicher AR-Arbeitspl{\"a}tze f{\"u}r den Einsatz in kleinen und mittleren Unternehmen (KMU). Das entwickelte AR- Handarbeitskonzept beinhaltet eine Just-in-time-Darstellung der Arbeitsaufgaben auf Werkst{\"u}cken mit automatisierter Fertigungskontrolle. Als Reaktion auf kurze Produktlebenszyklen und hohe Produktvielfalten sind alle Komponenten auf maximale Flexibilit{\"a}t ausgelegt. Ein Umr{\"u}sten auf neue Produkte kann innerhalb von Minuten erfolgen.}, language = {de} } @inproceedings{ChavezBermudezWollert2019, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {Gateway for Automation Controllers and Cloud based Voice Recognition Services}, series = {KommA, 10. Jahreskolloquium Kommunikation in der Automation}, booktitle = {KommA, 10. Jahreskolloquium Kommunikation in der Automation}, publisher = {Institut f{\"u}r Automation und Kommunikation}, address = {Magdeburg}, organization = {KommA, 2019, Jahreskolloquium Kommunikation in der Automation, 10., Lemgo, DE, 2019-11-20 - 2019-11-21}, isbn = {978-3-944722-85-6}, pages = {1 -- 8}, year = {2019}, language = {en} } @article{WollbrinkMasloZimmeretal.2020, author = {Wollbrink, Moritz and Maslo, Semir and Zimmer, Daniel and Abbas, Karim and Arntz, Kristian and Bergs, Thomas}, title = {Clamping and substrate plate system for continuous additive build-up and post-processing of metal parts}, series = {Procedia CIRP}, volume = {93}, journal = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2020.04.015}, pages = {108 -- 113}, year = {2020}, abstract = {The manufacturing share of laser powder bed fusion (L-PBF) increases in industrial application, but still many process steps are manually operated. Additionally, it is not possible to achieve tight dimensional tolerances or low surfaces roughness. Hence, a process chain has to be set up to combine additive manufacturing (AM) with further machining technologies. To achieve a continuous workpiece flow as basis for further industrialization of L-PBF, the paper presents a novel substrate system and its application on L-PBF machines and post-processing. The substrate system consists of a zero-point clamping system and a matrix-like interface of contact pins to be substantially connected to the workpiece within the L-PBF process.}, language = {en} } @article{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Human-Centered Gamification Framework for Manufacturing Systems}, series = {Procedia CIRP}, volume = {93}, journal = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2020.04.076}, pages = {670 -- 675}, year = {2020}, abstract = {While bringing new opportunities, the Industry 4.0 movement also imposes new challenges to the manufacturing industry and all its stakeholders. In this competitive environment, a skilled and engaged workforce is a key to success. Gamification can generate valuable feedbacks for improving employees' engagement and performance. Currently, Gamification in workspaces focuses on computer-based assignments and training, while tasks that require manual labor are rarely considered. This research provides an overview of Enterprise Gamification approaches and evaluates the challenges. Based on that, a skill-based Gamification framework for manual tasks is proposed, and a case study in the Industry 4.0 model factory is shown.}, language = {en} } @article{KunkelGebhardtMpofuetal.2019, author = {Kunkel, Maximilian Hugo and Gebhardt, Andreas and Mpofu, Khumbulani and Kallweit, Stephan}, title = {Quality assurance in metal powder bed fusion via deep-learning-based image classification}, series = {Rapid Prototyping Journal}, volume = {26}, journal = {Rapid Prototyping Journal}, number = {2}, issn = {1355-2546}, doi = {10.1108/RPJ-03-2019-0066}, pages = {259 -- 266}, year = {2019}, language = {en} } @article{RaffeisAdjeiKyeremehVroomenetal.2020, author = {Raffeis, Iris and Adjei-Kyeremeh, Frank and Vroomen, Uwe and Westhoff, Elmar and Bremen, Sebastian and Hohoi, Alexandru and B{\"u}hrig-Polaczek, Andreas}, title = {Qualification of a Ni-Cu alloy for the laser powder bed fusion process (LPBF): Its microstructure and mechanical properties}, series = {Applied Sciences}, volume = {10}, journal = {Applied Sciences}, number = {Art. 3401}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app10103401}, pages = {1 -- 15}, year = {2020}, abstract = {As researchers continue to seek the expansion of the material base for additive manufacturing, there is a need to focus attention on the Ni-Cu group of alloys which conventionally has wide industrial applications. In this work, the G-NiCu30Nb casting alloy, a variant of the Monel family of alloys with Nb and high Si content is, for the first time, processed via the laser powder bed fusion process (LPBF). Being novel to the LPBF processes, optimum LPBF parameters were determined, and hardness and tensile tests were performed in as-built conditions and after heat treatment at 1000 °C. Microstructures of the as-cast and the as-built condition were compared. Highly dense samples (99.8\% density) were achieved after varying hatch distance (80 µm and 140 µm) with scanning speed (550 mm/s-1500 mm/s). There was no significant difference in microhardness between varied hatch distance print sets. Microhardness of the as-built condition (247 HV0.2) exceeded the as-cast microhardness (179 HV0.2.). Tensile specimens built in vertical (V) and horizontal (H) orientations revealed degrees of anisotropy and were superior to conventionally reported figures. Post heat treatment increased ductility from 20\% to 31\% (V), as well as from 16\% to 25\% (H), while ultimate tensile strength (UTS) and yield strength (YS) were considerably reduced.}, language = {en} } @inproceedings{BraunChengDoweyetal.2020, author = {Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Survey on Security Concepts to Adapt Flexible Manufacturing and Operations Management based upon Multi-Agent Systems}, series = {2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Proceedings}, booktitle = {2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Proceedings}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/ISIE45063.2020.9152210}, pages = {5 Seiten}, year = {2020}, abstract = {The increasing digitalization brings new opportunities but also puts new challenges to modern industrial systems. Software agents are one of the key technologies towards self-optimizing factories and are currently used to address the needs of cyber-physical production systems (CPPS). However their interplay in industrial settings needs to be understood better.This paper focusses on securing a cloud infrastructure for multi-agent systems for industrial sites. An industrial site contains multiple production processes that need to communicate with each other and each physical resource is abstracted with a software agent. This volatile architecture needs to be managed and protected from manipulation. The proposed infrastructure presents a security concept for TCP/IP communication between agents, machines, and external networks. It is based on open-source software and tested on a three-node edge cloud controlling a model-plant.}, language = {en} }