@article{PieperIvanyshyn2008, author = {Pieper, Martin and Ivanyshyn, Olha}, title = {Nonlinear integral equations for a 3D inverse acoustic scattering problem : abstract / O. Ivanyshyn and M. Pieper}, year = {2008}, language = {en} } @article{PieperKlein2011, author = {Pieper, Martin and Klein, Peter}, title = {A simple and accurate numerical network flow model for bionic micro heat exchangers}, series = {Heat mass transfer}, volume = {47}, journal = {Heat mass transfer}, number = {5}, publisher = {Springer}, address = {Berlin}, isbn = {0947-7411}, pages = {491 -- 503}, year = {2011}, language = {en} } @article{PieperKlein2012, author = {Pieper, Martin and Klein, Peter}, title = {Application of simple, periodic homogenization techniques to non-linear heat conduction problems in non-periodic, porous media}, series = {Heat mass transfer}, volume = {48}, journal = {Heat mass transfer}, number = {2}, publisher = {Springer}, address = {Berlin}, issn = {0947-7411}, doi = {10.1007/s00231-011-0879-4}, pages = {291 -- 300}, year = {2012}, abstract = {Often, detailed simulations of heat conduction in complicated, porous media have large runtimes. Then homogenization is a powerful tool to speed up the calculations by preserving accurate solutions at the same time. Unfortunately real structures are generally non-periodic, which requires unpractical, complicated homogenization techniques. We demonstrate in this paper, that the application of simple, periodic techniques to realistic media, that are just close to periodic, gives accurate, approximative solutions. In order to obtain effective parameters for the homogenized heat equation, we have to solve a so called "cell problem". In contrast to periodic structures it is not trivial to determine a suitable unit cell, which represents a non-periodic media. To overcome this problem, we give a rule of thumb on how to choose a good cell. Finally we demonstrate the efficiency of our method for virtually generated foams as well as real foams and compare these results to periodic structures.}, language = {en} } @article{PieperKlein2010, author = {Pieper, Martin and Klein, Peter}, title = {Numerical solution of the heat equation with non-linear, time derivative-dependent source term}, series = {International Journal for Numerical Methods in Engineering}, volume = {84}, journal = {International Journal for Numerical Methods in Engineering}, number = {10}, publisher = {Wiley}, address = {Chichester}, issn = {0029-5981}, doi = {10.1002/nme.2937}, pages = {1205 -- 1221}, year = {2010}, abstract = {The mathematical modeling of heat conduction with adsorption effects in coated metal structures yields the heat equation with piecewise smooth coefficients and a new kind of source term. This term is special, because it is non-linear and furthermore depends on a time derivative. In our approach we reformulated this as a new problem for the usual heat equation, without source term but with a new non-linear coefficient. We gave an existence and uniqueness proof for the weak solution of the reformulated problem. To obtain a numerical solution, we developed a semi-implicit and a fully implicit finite volume method. We compared these two methods theoretically as well as numerically. Finally, as practical application, we simulated the heat conduction in coated aluminum fibers with adsorption in the zeolite coating. Copyright © 2010 John Wiley \& Sons, Ltd.}, language = {en} } @article{PredelGerdesGerling1979, author = {Predel, Bruno and Gerdes, F. and Gerling, Ulrich}, title = {Ber{\"u}cksichtigung der Assoziation in der Dampfphase bei Aktivit{\"a}tsbestimmungen und Revision der Aktivit{\"a}ten fl{\"u}ssiger Legierungen der Systeme Selen-Thallium, Selen-Wismut und Selen-Antimon}, series = {Zeitschrift f{\"u}r Metallkunde : international journal of materials research and advanced techniques. Bd. 70, H. 2}, journal = {Zeitschrift f{\"u}r Metallkunde : international journal of materials research and advanced techniques. Bd. 70, H. 2}, issn = {0044-3093 ; 0179-4841}, pages = {109 -- 112}, year = {1979}, language = {de} } @article{RateikeSiebourgSchmidetal.1990, author = {Rateike, Franz-Matthias and Siebourg, W. and Schmid, H. and Anders, S.}, title = {Birefringence - An important property of plastic substrates for magneto-optical storage disks / W. Siebourg ; H. Schmid ; F. M. Rateike ; S. Anders ; U. Grigo ; H. L{\"o}wer}, series = {Polymer engineering \& science / Society of Plastics Engineers. 30 (1990), H. 18}, journal = {Polymer engineering \& science / Society of Plastics Engineers. 30 (1990), H. 18}, isbn = {0032-3888}, pages = {1133 -- 1139}, year = {1990}, language = {en} } @article{RateikeWeyerWiedenmannetal.1981, author = {Rateike, Franz-Matthias and Weyer, K. G. and Wiedenmann, H. and MacGillivray, W. R.}, title = {Observation of absorptive optical bistability in a fabry-perot cavity containing multiple atomic beams / K. G. Weyer ; H. Wiedenmann ; M. Rateike ; W. R. Mac Gillivray ; P. Meystre ; H. Walther}, series = {Optics communications. 37 (1981), H. 6}, journal = {Optics communications. 37 (1981), H. 6}, isbn = {0030-4018}, pages = {426 -- 430}, year = {1981}, language = {en} } @article{RathMottaghy2014, author = {Rath, V. and Mottaghy, Darius}, title = {Klimainformation aus dem Untergrund?}, series = {Geographische Rundschau}, volume = {66}, journal = {Geographische Rundschau}, number = {7-8}, publisher = {Westermann}, address = {Braunschweig}, issn = {0016-7460}, pages = {30 -- 36}, year = {2014}, language = {de} } @article{RathMottaghy2007, author = {Rath, V. and Mottaghy, Darius}, title = {Smooth inversion for ground surface temperature histories: estimating the optimum regularization parameter by generalized cross-validation}, series = {Geophysical Journal International}, volume = {171}, journal = {Geophysical Journal International}, number = {3}, issn = {1365-246X}, doi = {10.1111/j.1365-246X.2007.03587.x}, pages = {1440 -- 1448}, year = {2007}, language = {en} } @article{RegerKuhnhenneHachuletal.2019, author = {Reger, Vitali and Kuhnhenne, Markus and Hachul, Helmut and D{\"o}ring, Bernd and Blanke, Tobias and G{\"o}ttsche, Joachim}, title = {Plusenergiegeb{\"a}ude 2.0 in Stahlleichtbauweise}, series = {Stahlbau}, volume = {88}, journal = {Stahlbau}, number = {6}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049 (E-journal), 0038-9145 (print)}, doi = {10.1002/stab.201900034}, pages = {522 -- 528}, year = {2019}, language = {de} } @article{RenaultButenwegMeskouris2005, author = {Renault, Philippe and Butenweg, Christoph and Meskouris, Konstantin}, title = {Beurteilung der Erdbebensicherheit von bestehenden Br{\"u}ckenbauwerken am Beispiel der Rheinbr{\"u}cke Emmerich}, series = {Beton- und Stahlbetonbau}, volume = {Volume 100}, journal = {Beton- und Stahlbetonbau}, number = {Issue 7}, issn = {1437-1006 (E-Journal); 0005-9900 (Print)}, doi = {10.1002/best.200590145}, pages = {574 -- 581}, year = {2005}, language = {de} } @article{RiekeStollenwerkDahmenetal.2018, author = {Rieke, Christian and Stollenwerk, Dominik and Dahmen, Markus and Pieper, Martin}, title = {Modeling and optimization of a biogas plant for a demand-driven energy supply}, series = {Energy}, volume = {145}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-5442}, doi = {10.1016/j.energy.2017.12.073}, pages = {657 -- 664}, year = {2018}, abstract = {Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60\%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process. This paper provides a new model of a biogas plant, which is as accurate as the standard ADM1 model. The advantage compared to ADM1 is that it is based on only four parameters compared to 28. Applying this model, an optimization was installed, which allows a demand-driven supply by biogas plants. Finally the results are confirmed by several experiments and measurements with a real test plant.}, language = {en} } @article{RochefortVerverGrunendahletal.2005, author = {Rochefort, E. de and Verver, M. and Grunendahl, A. and Mooi, H. and Butenweg, Christoph}, title = {Detailed modelling of the lumbar spine for investigations of low back pain}, series = {SAE transactions : papers presented at Society and Section meetings / Society of Automotive Engineers}, volume = {Volume 114}, journal = {SAE transactions : papers presented at Society and Section meetings / Society of Automotive Engineers}, number = {Part 7}, organization = {Society of Automotive Engineers}, issn = {0096-736X}, pages = {788 -- 796}, year = {2005}, language = {en} } @article{RosenauerOberstLitvinovetal.2000, author = {Rosenauer, A. and Oberst, W. and Litvinov, D. and Gerthsen, D. and F{\"o}rster, Arnold and Schmidt, R.}, title = {Structural and Chemical Investigation of In-0.6Ga0.4As Stranski-Krastanow Layers Burried in GaAs by Transmission Electron Microscopy}, series = {Physical Review B. 61 (2000), H. 12}, journal = {Physical Review B. 61 (2000), H. 12}, isbn = {1095-3795}, pages = {8276 -- 8288}, year = {2000}, language = {en} } @article{RosinButenwegCacciatoreetal.2018, author = {Rosin, Julia and Butenweg, Christoph and Cacciatore, Pamela and Boesen, Niklas}, title = {Investigation of the seismic performance of modern masonry buildings during the Emilia Romagna earthquake series}, series = {Mauerwerk}, volume = {22}, journal = {Mauerwerk}, number = {4}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1022}, doi = {10.1002/dama.201800013}, pages = {238 -- 250}, year = {2018}, abstract = {The article presents the investigation of the seismic behaviour of a modern URM building located in the municipality of Finale Emilia in province of Modena, Northern Italy. The building is situated in the centre of the series of the 2012 Northern Italy earthquakes and has not suffered any damage during the earthquake series in 2012. The observed earthquake resistance of the building is compared with predicted resistances based on linear and nonlinear design approaches according to Eurocode. Furthermore, probabilistic analyses based on nonlinear calculation models taking into account scattering of the most relevant input parameters are carried out to identify their influence to the results and to derive fragility curves.}, language = {en} } @article{RosinButenwegKlinkel2016, author = {Rosin, Julia and Butenweg, Christoph and Klinkel, Sven}, title = {Stabilit{\"a}tsnachweis f{\"u}r seismisch beanspruchte Tankbauwerke nach dem LBA/MNA-Konzept}, series = {Bauingenieur}, volume = {91}, journal = {Bauingenieur}, number = {12}, publisher = {VDI Fachmedien}, address = {D{\"u}sseldorf}, issn = {0005-6650}, doi = {10.37544/0005-6650-2016-12-74}, pages = {518 -- 526}, year = {2016}, abstract = {Eine seismische Anregung verursacht in einem Fl{\"u}ssigkeitstank einen kombinierten Spannungszustand, was zu einem Stabilit{\"a}tsversagen der h{\"a}ufig sehr d{\"u}nnwandigen Konstruktionen f{\"u}hren kann. F{\"u}r die Durchf{\"u}hrung von Stabilit{\"a}tsnachweisen stehen verschiedene Verfahren zur Verf{\"u}gung. {\"U}blicherweise werden aus Gr{\"u}nden der Einfachheit spannungsbasierte Verfahren angewendet. Diese sind f{\"u}r Einheitslastf{\"a}lle experimentell abgesichert, wobei eine {\"U}bertragung auf kombinierte Spannungszust{\"a}nde wie im Erdbebenfall nur begrenzt m{\"o}glich ist. Alternativ kann ein globales, numerisches Konzept, das LBA/MNA-Verfahren, angewendet werden. Das Verfahren kombiniert eine materiell nichtlineare Berechnung (MNA) mit einer linearen Beulanalyse (LBA) und erfasst die Interaktion verschiedener gleichzeitig auftretender Beanspruchungen implizit im Nachweis. Dieser Beitrag demonstriert die Anwendung der Verfahren am Beispiel verschiedener Tankgeometrien mit H{\"o}he/Radius-Verh{\"a}ltnissen zwischen 1 ≤ H/R ≤ 2 und Radius/Tankwand-Verh{\"a}ltnissen zwischen 500 ≤ R/t ≤ 1000 und diskutiert zus{\"a}tzlich die Defizite der spannungsbasierten Nachweisverfahren.}, language = {de} } @article{RossiHoltschoppenButenweg2019, author = {Rossi, Leonardo and Holtschoppen, Britta and Butenweg, Christoph}, title = {Official data on the economic consequences of the 2012 Emilia-Romagna earthquake: a first analysis of database SFINGE}, series = {Bulletin of Earthquake Engineering}, volume = {17}, journal = {Bulletin of Earthquake Engineering}, number = {9}, publisher = {Springer}, address = {Berlin}, doi = {10.1007\%2Fs10518-019-00655-8}, pages = {4855 -- 4884}, year = {2019}, language = {en} } @article{RossiParisiCasarietal.2019, author = {Rossi, Leonardo and Parisi, Davide and Casari, Chiara and Montanari, Luca and Ruggieri, Gabriella and Holtschoppen, Britta and Butenweg, Christoph}, title = {Empirical Data about Direct Economic Consequences of Emilia-Romagna 2012 Earthquake on Long-Span-Beam Buildings}, series = {Earthquake Spectra}, volume = {35}, journal = {Earthquake Spectra}, number = {4}, issn = {1944-8201}, doi = {10.1193/100118EQS224DP}, pages = {1979 -- 2001}, year = {2019}, language = {en} } @article{RossiStupazziniParisietal.2019, author = {Rossi, Leonardo and Stupazzini, Marco and Parisi, Davide and Holtschoppen, Britta and Ruggieri, Gabriella and Butenweg, Christoph}, title = {Empirical fragility functions and loss curves for long-span-beam buildings based on the 2012 Emilia-Romagna earthquake official database}, series = {Bulletin of Earthquake Engineering}, volume = {18}, journal = {Bulletin of Earthquake Engineering}, publisher = {Springer Nature}, issn = {1573-1456}, doi = {10.1007/s10518-019-00759-1}, pages = {1693 -- 1721}, year = {2019}, abstract = {The 2012 Emilia-Romagna earthquake, that mainly struck the homonymous Italian region provoking 28 casualties and damage to thousands of structures and infrastructures, is an exceptional source of information to question, investigate, and challenge the validity of seismic fragility functions and loss curves from an empirical standpoint. Among the most recent seismic events taking place in Europe, that of Emilia-Romagna is quite likely one of the best documented, not only in terms of experienced damages, but also for what concerns occurred losses and necessary reconstruction costs. In fact, in order to manage the compensations in a fair way both to citizens and business owners, soon after the seismic sequence, the regional administrative authority started (1) collecting damage and consequence-related data, (2) evaluating information sources and (3) taking care of the cross-checking of various reports. A specific database—so-called Sistema Informativo Gestione Europa (SFINGE)—was devoted to damaged business activities. As a result, 7 years after the seismic events, scientists can rely on a one-of-a-kind, vast and consistent database, containing information about (among other things): (1) buildings' location and dimensions, (2) occurred structural damages, (3) experienced direct economic losses and (4) related reconstruction costs. The present work is focused on a specific data subset of SFINGE, whose elements are Long-Span-Beam buildings (mostly precast) deployed for business activities in industry, trade or agriculture. With the available set of data, empirical fragility functions, cost and loss ratio curves are elaborated, that may be included within existing Performance Based Earthquake Engineering assessment toolkits.}, language = {en} } @article{RossiWinandsButenweg2022, author = {Rossi, Leonardo and Winands, Mark H. M. and Butenweg, Christoph}, title = {Monte Carlo Tree Search as an intelligent search tool in structural design problems}, series = {Engineering with Computers : An International Journal for Simulation-Based Engineering}, volume = {38}, journal = {Engineering with Computers : An International Journal for Simulation-Based Engineering}, number = {4}, editor = {Zhang, Jessica}, publisher = {Springer Nature}, address = {Cham}, issn = {1435-5663}, doi = {10.1007/s00366-021-01338-2}, pages = {3219 -- 3236}, year = {2022}, abstract = {Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study's outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers.}, language = {en} }