@inproceedings{AyedStrieganKustereretal.2017, author = {Ayed, Anis Haj and Striegan, Constantin J. D. and Kusterer, Karsten and Funke, Harald and Kazari, M. and Horikawa, Atsushi and Okada, Kunio}, title = {Automated design space exploration of the hydrogen fueled "Micromix" combustor technology}, pages = {1 -- 8}, year = {2017}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field.}, language = {en} } @article{AyedKustererFunkeetal.2017, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan and Bohn, D.}, title = {CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities}, series = {Propulsion and Power Research}, volume = {6}, journal = {Propulsion and Power Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2212-540X}, doi = {10.1016/j.jppr.2017.01.005}, pages = {15 -- 24}, year = {2017}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @inproceedings{Dachwald2017, author = {Dachwald, Bernd}, title = {Radiation pressure force model for an ideal laser-enhanced solar sail}, series = {4th International Symposium on Solar Sailing}, booktitle = {4th International Symposium on Solar Sailing}, pages = {1 -- 5}, year = {2017}, abstract = {The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a "traditional" solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail's propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible.}, language = {en} } @inproceedings{KreyerEsch2017, author = {Kreyer, J{\"o}rg and Esch, Thomas}, title = {Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles}, series = {European GT Conference 2017}, booktitle = {European GT Conference 2017}, pages = {16 Seiten}, year = {2017}, abstract = {Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas}, language = {en} } @incollection{PielenRoethFlatten2018, author = {Pielen, Michael and R{\"o}th, Thilo and Flatten, T.}, title = {Erfolgsfaktoren k{\"u}nftiger Gesch{\"a}ftsmodelle von urbanen, geteilten Mobilit{\"a}tsdienstleistungen}, series = {Mobilit{\"a}t und digitale Transformation. (9. Wissenschaftsforum Mobilit{\"a}t. Tagungsband)}, booktitle = {Mobilit{\"a}t und digitale Transformation. (9. Wissenschaftsforum Mobilit{\"a}t. Tagungsband)}, editor = {Proff, H.}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-20779-3}, doi = {10.1007/978-3-658-20779-3_2}, pages = {435 -- 448}, year = {2018}, abstract = {Digitalisierung bezeichnet die Nutzung großer Datenmengen, die zu einer umfassenden Vernetzung aller Bereiche der Wirtschaft und Gesellschaft f{\"u}hren wird (BMWi, 2015 und {\"a}hnlich K{\"o}hler/Wollschl{\"a}ger, 2014: 79). Sie umfasst die Erhebung von analogen Informationen („Big Data" in einem engen Sinne; z.B. O´Leary, 2013), ihre Speicherung in einem digitaltechnischen System (lokale Speicherung oder „Cloud Computing" durch die Weiterentwickelung des Internets; z.B. Hashem et al., 2015: 101), die Analyse und Interpretation sowie den Transfer in andere Systeme („Internet der Dinge" bzw. „Internet of Things"; z.B. Ashton, 2009).}, language = {de} } @article{FunkeBeckmannKeinzetal.2018, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {140}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {8}, publisher = {ASME}, address = {New York, NY}, issn = {0742-4795}, doi = {10.1115/1.4038882}, pages = {9 Seiten}, year = {2018}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry.}, language = {en} } @inproceedings{SchulzeMuehleisenFeyerl2018, author = {Schulze, Sven and M{\"u}hleisen, M. and Feyerl, G{\"u}nter}, title = {Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology}, series = {18. Internationales Stuttgarter Symposium. Proceedings}, booktitle = {18. Internationales Stuttgarter Symposium. Proceedings}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-21194-3}, pages = {75 -- 89}, year = {2018}, language = {en} } @article{RoethPielenWolffetal.2018, author = {R{\"o}th, Thilo and Pielen, Michael and Wolff, Klaus and L{\"u}diger, Thomas}, title = {Urbane Fahrzeugkonzepte f{\"u}r die Shared Mobility}, series = {Automobiltechnische Zeitschrift - ATZ}, volume = {120}, journal = {Automobiltechnische Zeitschrift - ATZ}, number = {1}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0001-2785}, doi = {10.1007/s35148-017-0176-8}, pages = {18 -- 23}, year = {2018}, abstract = {Urbane Mobilit{\"a}tskonzepte der Zukunft erfordern neue Unternehmensformen, idealerweise aus Old Economy und New Economy, sowie eine enge Anbindung an die gesellschaftsrelevante Zukunftsforschung. F{\"u}r neue Fahrzeugkonzepte des Carsharing bedeutet dies, dass alle kostenverursachenden Faktoren erfasst und analysiert werden m{\"u}ssen. Die FH Aachen, share2drive und FEV geben einen Ausblick auf die zuk{\"u}nftige Fahrzeugklasse der Personal Public Vehicles als „Rolling Device".}, language = {de} } @article{SchirraBissonnetteBramesfeld2018, author = {Schirra, Julian and Bissonnette, William and Bramesfeld, G{\"o}tz}, title = {Wake-model effects on induced drag prediction of staggered boxwings}, series = {Aerospace}, volume = {5}, journal = {Aerospace}, number = {1}, issn = {2226-4310}, doi = {10.3390/aerospace5010014}, year = {2018}, language = {en} } @inproceedings{Blome2018, author = {Blome, Hans-Joachim}, title = {{\"U}ber die kulturelle Bedeutung der Raumfahrt}, series = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, booktitle = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, pages = {5 -- 5}, year = {2018}, language = {de} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems}, series = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, booktitle = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, pages = {11 S.}, year = {2018}, language = {en} } @inproceedings{FingerGoettenBraun2018, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten}, title = {Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft}, series = {67. Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {67. Deutscher Luft- und Raumfahrtkongress 2018}, pages = {14 S.}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2018}, doi = {10.25967/480227}, pages = {15 S.}, year = {2018}, language = {en} } @article{GoettenFingerHavermannetal.2018, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Gomez, Francisco and Bill, C.}, title = {On the flight performance impact of landing gear drag reduction methods for unmanned air vehicles}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, journal = {Deutscher Luft- und Raumfahrtkongress 2018}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/480058}, pages = {11 S.}, year = {2018}, abstract = {The flight performance impact of three different landing gear configurations on a small, fixed-wing UAV is analyzed with a combination of RANS CFD calculations and an incremental flight performance algorithm. A standard fixed landing gear configuration is taken as a baseline, while the influence of retracting the landing gear or applying streamlined fairings is investigated. A retraction leads to a significant parasite drag reduction, while also fairings promise large savings. The increase in lift-to-drag ratio is reduced at high lift coefficients due to the influence of induced drag. All configurations are tested on three different design missions with an incremental flight performance algorithm. A trade-off study is performed using the retracted or faired landing gear's weight increase as a variable. The analysis reveals only small mission performance gains as the aerodynamic improvements are negated by weight penalties. A new workflow for decision-making is presented that allows to estimate if a change in landing gear configuration is beneficial for a small UAV.}, language = {en} } @phdthesis{Keinz2018, author = {Keinz, Jan}, title = {Optimization of a Dry Low NOx Micromix Combustor for an Industrial Gas Turbine Using Hydrogen-Rich Syngas Fuel}, publisher = {Universit{\´e} Libre de Bruxelles - Brussels School of Engineering Aero-Thermo-Mechanics}, address = {Br{\"u}ssel}, year = {2018}, language = {en} } @article{TekinAshikagaHorikawaetal.2018, author = {Tekin, Nurettin and Ashikaga, Mitsugu and Horikawa, Atsushi and Funke, Harald}, title = {Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems}, series = {Gas for energy}, journal = {Gas for energy}, number = {2}, publisher = {Vulkan-Verlag}, address = {Essen}, pages = {4}, year = {2018}, abstract = {For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized "diffusion-type" flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames.}, language = {en} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Case studies in initial sizing for hybrid-electric general aviation aircraft}, series = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, booktitle = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, doi = {10.2514/6.2018-5005}, year = {2018}, language = {en} } @article{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs}, series = {CEAS Aeronautical Journal}, volume = {10}, journal = {CEAS Aeronautical Journal}, number = {3}, publisher = {Springer}, issn = {1869-5582 print}, doi = {10.1007/s13272-018-0352-x}, pages = {843}, year = {2018}, abstract = {One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost-benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters.}, language = {en} } @incollection{RoethDeutskensKreiskoetheretal.2018, author = {R{\"o}th, Thilo and Deutskens, Christoph and Kreisk{\"o}ther, Kai and Heimes, Heiner Hans and Schittny, Bastian and Ivanescu, Sebastian and Kleine B{\"u}ning, Max and Reinders, Christian and Wessels, Saskia and Haunreiter, Andreas and Reisgen, Uwe and Thiele, Regina and Hameyer, Kay and Doncker, Rik W. de and Sauer, Uwe and Hoek, Hauke van and H{\"u}bner, Mareike and Hennen, Martin and Stolze, Thilo and Vetter, Andreas and Hagedorn, J{\"u}rgen and M{\"u}ller, Dirk and Rewitz, Kai and Wesseling, Mark and Flieger, Bj{\"o}rn}, title = {Entwicklung von elektrofahrzeugspezifischen Systemen}, series = {Elektromobilit{\"a}t}, booktitle = {Elektromobilit{\"a}t}, publisher = {Springer Vieweg}, address = {Berlin, Heidelberg}, isbn = {978-3-662-53137-2}, doi = {10.1007/978-3-662-53137-2_6}, pages = {279 -- 386}, year = {2018}, abstract = {Die Batterie ist eine der absolut zentralen Komponenten des Elektrofahrzeugs. Die serielle Entwicklung und Produktion dieser Batterien und die Verbesserung der Leistungen wird entscheidend f{\"u}r den Erfolg der Elektromobilit{\"a}t sein. Die Batterie ist jedoch nicht das einzige elektrofahrzeugspezifische System, das neu entwickelt, umkonzipiert oder verbessert werden muss. So sind ebenso die Entwicklung der neuen Fahrzeugstruktur sowie des elektrifizierten Antriebsstranges Teil dieses Kapitels. Weiterhin wird ein Blick auf das bedeutende Thema des Thermomanagements geworfen.}, language = {de} }