@article{BohndickBosseJaenschetal.2021, author = {Bohndick, Carla and Bosse, Elke and J{\"a}nsch, Vanessa K. and Barnat, Miriam}, title = {How different diversity factors affect the perception of first-year requirements in higher education}, series = {Frontline Learning Research}, volume = {9}, journal = {Frontline Learning Research}, number = {2}, publisher = {EARLI}, issn = {2295-3159}, doi = {10.14786/flr.v9i2.667}, pages = {78 -- 95}, year = {2021}, abstract = {In the light of growing university entry rates, higher education institutions not only serve larger numbers of students, but also seek to meet first-year students' ever more diverse needs. Yet to inform universities how to support the transition to higher education, research only offers limited insights. Current studies tend to either focus on the individual factors that affect student success or they highlight students' social background and their educational biography in order to examine the achievement of selected, non-traditional groups of students. Both lines of research appear to lack integration and often fail to take organisational diversity into account, such as different types of higher education institutions or degree programmes. For a more comprehensive understanding of student diversity, the present study includes individual, social and organisational factors. To gain insights into their role for the transition to higher education, we examine how the different factors affect the students' perception of the formal and informal requirements of the first year as more or less difficult to cope with. As the perceived requirements result from both the characteristics of the students and the institutional context, they allow to investigate transition at the interface of the micro and the meso level of higher education. Latent profile analyses revealed that there are no profiles with complex patterns of perception of the first-year requirements, but the identified groups rather differ in the overall level of perceived challenges. Moreover, SEM indicates that the differences in the perception largely depend on the individual factors self-efficacy and volition.}, language = {en} } @article{DickhoffHorikawaFunke2021, author = {Dickhoff, Jens and Horikawa, Atsushi and Funke, Harald}, title = {Hydrogen Combustion - new DLE Combustor Addresses NOx Emissions and Flashback}, series = {Turbomachinery international : the global journal of energy equipment}, volume = {62}, journal = {Turbomachinery international : the global journal of energy equipment}, number = {4}, publisher = {MJH Life Sciences}, address = {Cranbury}, issn = {2767-2328}, pages = {26 -- 27}, year = {2021}, language = {en} } @article{SeefeldtDachwald2021, author = {Seefeldt, Patric and Dachwald, Bernd}, title = {Temperature increase on folded solar sail membranes}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2020.09.026}, pages = {2688 -- 2695}, year = {2021}, language = {en} } @article{GermanMikuckiWelchetal.2021, author = {German, Laura and Mikucki, Jill A. and Welch, Susan A. and Welch, Kathleen A. and Lutton, Anthony and Dachwald, Bernd and Kowalski, Julia and Heinen, Dirk and Feldmann, Marco and Francke, Gero and Espe, Clemens and Lyons, W. Berry}, title = {Validation of sampling antarctic subglacial hypersaline waters with an electrothermal ice melting probe (IceMole) for environmental analytical geochemistry}, series = {International Journal of Environmental Analytical Chemistry}, volume = {101}, journal = {International Journal of Environmental Analytical Chemistry}, number = {15}, publisher = {Taylor \& Francis}, address = {London}, issn = {0306-7319}, doi = {10.1080/03067319.2019.1704750}, pages = {2654 -- 2667}, year = {2021}, abstract = {Geochemical characterisation of hypersaline waters is difficult as high concentrations of salts hinder the analysis of constituents at low concentrations, such as trace metals, and the collection of samples for trace metal analysis in natural waters can be easily contaminated. This is particularly the case if samples are collected by non-conventional techniques such as those required for aquatic subglacial environments. In this paper we present the first analysis of a subglacial brine from Taylor Valley, (~ 78°S), Antarctica for the trace metals: Ba, Co, Mo, Rb, Sr, V, and U. Samples were collected englacially using an electrothermal melting probe called the IceMole. This probe uses differential heating of a copper head as well as the probe's sidewalls and an ice screw at the melting head to move through glacier ice. Detailed blanks, meltwater, and subglacial brine samples were collected to evaluate the impact of the IceMole and the borehole pump, the melting and collection process, filtration, and storage on the geochemistry of the samples collected by this device. Comparisons between melt water profiles through the glacier ice and blank analysis, with published studies on ice geochemistry, suggest the potential for minor contributions of some species Rb, As, Co, Mn, Ni, NH4+, and NO2-+NO3- from the IceMole. The ability to conduct detailed chemical analyses of subglacial fluids collected with melting probes is critical for the future exploration of the hundreds of deep subglacial lakes in Antarctica.}, language = {en} } @article{SaretzkiBergmannDahmannetal.2021, author = {Saretzki, Charlotte and Bergmann, Ole and Dahmann, Peter and Janser, Frank and Keimer, Jona and Machado, Patricia and Morrison, Audry and Page, Henry and Pluta, Emil and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Are small airplanes safe with regards to COVID-19 transmission?}, series = {Journal of Travel Medicine}, volume = {28}, journal = {Journal of Travel Medicine}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1708-8305}, doi = {10.1093/jtm/taab105}, year = {2021}, language = {en} } @inproceedings{SchopenKemperEsch2021, author = {Schopen, Oliver and Kemper, Hans and Esch, Thomas}, title = {Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, publisher = {FH Joanneum}, address = {Graz}, isbn = {978-3-902103-94-9}, pages = {45 -- 46}, year = {2021}, abstract = {In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device.}, language = {en} } @inproceedings{KohlbergerWildKasperetal.2021, author = {Kohlberger, David-Sharif and Wild, Dominik and Kasper, Stefan and Czupalla, Markus}, title = {Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method}, series = {ICES202: Satellite, Payload, and Instrument Thermal Control}, booktitle = {ICES202: Satellite, Payload, and Instrument Thermal Control}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated.}, language = {en} } @inproceedings{WildCzupallaFoerstner2021, author = {Wild, Dominik and Czupalla, Markus and F{\"o}rstner, Roger}, title = {Modeling, prediction and test of additive manufactured integral structures with embedded lattice and phase change material applying Infused Thermal Solutions (ITS)}, series = {ICES104: Advances in Thermal Control Technology}, booktitle = {ICES104: Advances in Thermal Control Technology}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Infused Thermal Solutions (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, but with phase change material (PCM) for thermal energy storage (TES), in combination with lattice - both embedded in additive manufactured functional structures. In this ITS follow-on paper a thermal model approach and associated predictions are presented, related on the ITS functional breadboards developed at FH Aachen. Predictive TES by PCM is provided by a specially developed ITS PCM subroutine, which is applicable in ESATAN. The subroutine is based on the latent heat storage (LHS) method to numerically embed thermo-physical PCM behavior. Furthermore, a modeling approach is introduced to numerically consider the virtual PCM/lattice nodes within the macro-encapsulated PCM voids of the double wall ITS design. Related on these virtual nodes, in-plane and out-of-plane conductive links are defined. The recent additive manufactured ITS breadboard series are thermally cycled in the thermal vacuum chamber, both with and without embedded PCM. Related on breadboard hardware tests, measurement results are compared with predictions and are subsequently correlated. The results of specific simulations and measurements are presented. Recent predictive results of star tracker analyses are also presented in ICES-2021-106, based on this ITS PCM subroutine.}, language = {en} } @misc{MayntzKeimerTegtmeyeretal.2021, author = {Mayntz, Joscha and Keimer, Jona and Tegtmeyer, Philipp and Dahmann, Peter and Hille, Sebastian and Stumpf, Eike and Fisher, Alex and Dorrington, Graham}, title = {Aerodynamic Investigation on Efficient Inflight Transition of a Propeller from Propulsion to Regeneration Mode}, series = {AIAA SCITECH 2022 Forum}, journal = {AIAA SCITECH 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-0546}, year = {2021}, abstract = {This paper discusses a new way of inflight power regeneration for electric or hybrid-electric driven general aviation aircraft with one powertrain for both configurations. Three different approaches for the shift from propulsion to regeneration mode are analyzed. Numerical cal-culation and wind tunnel results are compared and show the highest regeneration potential for the "Windmill" approach, where the propeller blades are flipped, and rotation is reversed. A combination of all regeneration approaches for a realistic flight mission is discussed.}, language = {en} } @article{FunkeBeckmann2022, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {13}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {2}, issn = {1882-5079}, pages = {1 -- 7}, year = {2022}, abstract = {The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.\% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance}, language = {en} } @article{Maurischat2022, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, series = {Journal of Number Theory}, volume = {240}, journal = {Journal of Number Theory}, publisher = {Elsevier}, address = {Orlando, Fla.}, issn = {0022-314X}, doi = {10.1016/j.jnt.2022.01.006}, pages = {145 -- 162}, year = {2022}, language = {en} } @incollection{BauschatBennerKlingeetal.2022, author = {Bauschat, J.-Michael and Benner, Miriam and Klinge, Henner and Ziegler, Simon}, title = {Urbane Mobilit{\"a}t entdeckt die 3. Dimension}, series = {Transforming Mobility - What Next?}, booktitle = {Transforming Mobility - What Next?}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-36429-8}, doi = {10.1007/978-3-658-36430-4_53}, pages = {895 -- 916}, year = {2022}, abstract = {Der Themenkomplex urbane Mobilit{\"a}t ist getrieben durch den Verkehrsinfarkt in Ballungszentren, durch Luftverschmutzung und L{\"a}rm, sowie den Trend zum Leben in der Stadt in den st{\"a}dteplanerischen Fokus ger{\"u}ckt. Emissionsneutrale Antriebskonzepte in der Luftfahrt f{\"u}hren zu Ans{\"a}tzen Flugger{\"a}te einzusetzen, die batteriegetrieben vertikal aufsteigen und landen k{\"o}nnen. Flugphysikalisch und energetisch ist diese Technik nur dann sinnvoll, wenn es zwingende Gr{\"u}nde gibt (z.B. Rettungseins{\"a}tze), daher wird der flugphysikalische Hintergrund prinzipiell erl{\"a}utert. Es werden einige aktuelle Lufttransportkonzepte f{\"u}r eine urbane Personenbef{\"o}rderung vorgestellt. Sollte es verst{\"a}rkt zu Lufttransport {\"u}ber St{\"a}dten kommen, m{\"u}ssen betroffene Luftr{\"a}ume geordnet und {\"u}berwacht werden. Wie kompatibel Lufttransportsysteme mit den heute bereits relevanten urbanen Bef{\"o}rderungsmitteln sein m{\"u}ssen, wird kritisch diskutiert. Abschließend werden die Aspekte Akzeptanz durch die Kunden und Wirtschaftlichkeit ebenso angerissen, wie die hochproblematische Rohstoffgewinnung, die Entsorgung und das Recycling von Batterien.}, language = {de} } @inproceedings{HorikawaAshikagaYamaguchietal.2022, author = {Horikawa, Atsushi and Ashikaga, Mitsugu and Yamaguchi, Masato and Ogino, Tomoyuki and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combined heat and power supply demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine}, series = {Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A)}, booktitle = {Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A)}, publisher = {American Society of Mechanical Engineers}, address = {Fairfield}, isbn = {978-0-7918-8599-4}, doi = {10.1115/GT2022-81620}, pages = {7 Seiten}, year = {2022}, abstract = {Kawasaki Heavy Industries, Ltd. (KHI), Aachen University of Applied Sciences, and B\&B-AGEMA GmbH have investigated the potential of low NOx micro-mix (MMX) hydrogen combustion and its application to an industrial gas turbine combustor. Engine demonstration tests of a MMX combustor for the M1A-17 gas turbine with a co-generation system were conducted in the hydrogen-fueled power generation plant in Kobe City, Japan. This paper presents the results of the commissioning test and the combined heat and power (CHP) supply demonstration. In the commissioning test, grid interconnection, loading tests and load cut-off tests were successfully conducted. All measurement results satisfied the Japanese environmental regulation values. Dust and soot as well as SOx were not detected. The NOx emissions were below 84 ppmv at 15 \% O2. The noise level at the site boundary was below 60 dB. The vibration at the site boundary was below 45 dB. During the combined heat and power supply demonstration, heat and power were supplied to neighboring public facilities with the MMX combustion technology and 100 \% hydrogen fuel. The electric power output reached 1800 kW at which the NOx emissions were 72 ppmv at 15 \% O2, and 60 \%RH. Combustion instabilities were not observed. The gas turbine efficiency was improved by about 1 \% compared to a non-premixed type combustor with water injection as NOx reduction method. During a total equivalent operation time of 1040 hours, all combustor parts, the M1A-17 gas turbine as such, and the co-generation system were without any issues.}, language = {en} } @article{HeinEubanksLingametal.2022, author = {Hein, Andreas M. and Eubanks, T. Marshall and Lingam, Manasvi and Hibberd, Adam and Fries, Dan and Schneider, Jean and Kervella, Pierre and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd}, title = {Interstellar now! Missions to explore nearby interstellar objects}, series = {Advances in Space Research}, volume = {69}, journal = {Advances in Space Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.06.052}, pages = {402 -- 414}, year = {2022}, abstract = {The recently discovered first hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @incollection{HebelHerrmannRitzetal.2022, author = {Hebel, Christoph and Herrmann, Ulf and Ritz, Thomas and R{\"o}th, Thilo and Anthrakidis, Anette and B{\"o}ker, J{\"o}rg and Franzke, Till and Grodzki, Thomas and Merkens, Torsten and Sch{\"o}ttler, Mirjam}, title = {FlexSHARE - Methodisches Framework zur innovativen Gestaltung der urbanen Mobilit{\"a}t durch Sharing- Angebote}, series = {Transforming Mobility - What Next?}, booktitle = {Transforming Mobility - What Next?}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-36429-8}, doi = {10.1007/978-3-658-36430-4_10}, pages = {153 -- 169}, year = {2022}, abstract = {Das Ziel des INTERREG-Projektes „SHAREuregio" (FKZ: 34.EFRE-0300134) ist es, grenz{\"u}berschreitende Mobilit{\"a}t in der Euregio Rhein-Maas-Nord zu erm{\"o}glichen und zu f{\"o}rdern. Dazu soll ein elektromobiles Car- und Bikesharing- System entwickelt und in der Stadt M{\"o}nchengladbach, im Kreis Viersen sowie in den Gemeinden Roermond und Venlo (beide NL) zusammen mit den Partnern Wirtschaftsf{\"o}rderung M{\"o}nchengladbach, Wirtschaftsf{\"o}rderung f{\"u}r den Kreis Viersen, NEW AG, Goodmoovs (NL), Greenflux (NL) und der FH Aachen implementiert werden. Zun{\"a}chst richtet sich das Angebot, bestehend aus 40 Elektroautos und 40 Elektrofahrr{\"a}dern, an Unternehmen und wird nach einer Erprobungsphase, mit einer gr{\"o}ßeren Anzahl an Fahrzeugen, auch f{\"u}r Privatpersonen verf{\"u}gbar gemacht werden. Die Fahrzeuge stehen bei den jeweiligen Anwendungspartnern in Deutschland und den Niederlanden. Im Rahmen dieses Projektes hat die FH Aachen „FlexSHARE" entwickelt - ein methodisches Framework zur innovativen Gestaltung urbaner Sharing- Angebote. Das Framework erm{\"o}glicht es, anhand von messbaren Kenngr{\"o}ßen, bedarfsgerechte und auf die Region abgestimmte Sharing-Systeme zu entwickeln.}, language = {de} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Antriebssystemanpassungen zur Verwendung von LPG als Flugkraftstoff}, series = {Motortechnische Zeitschrift (MTZ)}, volume = {2022}, journal = {Motortechnische Zeitschrift (MTZ)}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s35146-021-0778-2}, pages = {58 -- 62}, year = {2022}, abstract = {Auch in der allgemeinen Luftfahrt w{\"a}re es w{\"u}nschenswert, die bereits vorhandenen Verbrennungsmotoren mit weniger CO₂-tr{\"a}chtigen Kraftstoffen als dem heute weit verbreiteten Avgas 100LL betreiben zu k{\"o}nnen. Es ist anzunehmen, dass im Vergleich die unter Normalbedingungen gasf{\"o}rmigen Kraftstoffe CNG, LPG oder LNG deutlich weniger Emissionen produzieren. Erforderliche Antriebssystemanpassungen wurden im Rahmen eines Forschungsprojekts an der FH Aachen untersucht.}, language = {de} } @inproceedings{SchopenShabaniEschetal.2022, author = {Schopen, Oliver and Shabani, Bahman and Esch, Thomas and Kemper, Hans and Shah, Neel}, title = {Quantitative evaluation of health management designs for fuel cell systems in transport vehicles}, series = {2nd UNITED-SAIG International Conference Proceedings}, booktitle = {2nd UNITED-SAIG International Conference Proceedings}, editor = {Rahim, S.A. and As'arry, A. and Zuhri, M.Y.M. and Harmin, M.Y. and Rezali, K.A.M. and Hairuddin, A.A.}, pages = {1 -- 3}, year = {2022}, abstract = {Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified.}, language = {en} } @misc{FeldmannFranckeEspeetal.2022, author = {Feldmann, Marco and Francke, Gero and Espe, Clemes and Chen, Qian and Baader, Fabian and Boxberg, Marc S. and Sustrate, Anna-Marie and Kowalski, Julia and Dachwald, Bernd}, title = {Performance data of an ice-melting probe from field tests in two different ice environments}, doi = {10.5281/zenodo.6094866}, year = {2022}, abstract = {This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters).}, language = {en} } @inproceedings{MayntzKeimerDahmannetal.2022, author = {Mayntz, Joscha and Keimer, Jona and Dahmann, Peter and Hille, Sebastian and Stumpf, Eike and Fisher, Alex and Dorrington, Graham}, title = {Electrical Drive and Regeneration in General Aviation Flight with Propellers}, series = {Deutscher Luft- und Raumfahrtkongress 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2020}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/530100}, pages = {8 Seiten}, year = {2022}, abstract = {Electric flight has the potential for a more sustainable and energy-saving way of aviation compared to fossil fuel aviation. The electric motor can be used as a generator inflight to regenerate energy during descent. Three different approaches to regenerating with electric propeller powertrains are proposed in this paper. The powertrain is to be set up in a wind tunnel to determine the propeller efficiency in both working modes as well as the noise emissions. Furthermore, the planned flight tests are discussed. In preparation for these tests, a yaw stability analysis is performed with the result that the aeroplane is controllable during flight and in the most critical failure case. The paper shows the potential for inflight regeneration and addresses the research gaps in the dual role of electric powertrains for propulsion and regeneration of general aviation aircraft.}, language = {en} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Powertrain Adaptions for LPG Usage in General Aviation}, series = {MTZ worldwide}, volume = {2022}, journal = {MTZ worldwide}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s38313-021-0756-6}, pages = {58 -- 62}, year = {2022}, abstract = {In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences.}, language = {en} }