@article{AyedKustererFunkeetal.2017, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan and Bohn, D.}, title = {CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities}, series = {Propulsion and Power Research}, volume = {6}, journal = {Propulsion and Power Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2212-540X}, doi = {10.1016/j.jppr.2017.01.005}, pages = {15 -- 24}, year = {2017}, language = {en} } @inproceedings{AyedStrieganKustereretal.2017, author = {Ayed, Anis Haj and Striegan, Constantin J. D. and Kusterer, Karsten and Funke, Harald and Kazari, M. and Horikawa, Atsushi and Okada, Kunio}, title = {Automated design space exploration of the hydrogen fueled "Micromix" combustor technology}, pages = {1 -- 8}, year = {2017}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field.}, language = {en} } @inproceedings{KubalskiButenwegMarinkovićetal.2017, author = {Kubalski, T. and Butenweg, Christoph and Marinković, Marko and Klinkel, S.}, title = {Investigation Of The Seismic Behaviour Of Infill Masonry Using Numerical Modelling Approaches}, series = {16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, booktitle = {16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, publisher = {Chilean Association on Seismology and Earthquake Engineering (ACHISINA)}, pages = {1 -- 11}, year = {2017}, abstract = {Masonry is a widely spread construction type which is used all over the world for different types of structures. Due to its simple and cheap construction, it is used as non-structural as well as structural element. In frame structures, such as reinforced concrete frames, masonry may be used as infill. While the bare frame itself is able to carry the loads when it comes to seismic events, the infilled frame is not able to warp freely due to the constrained movement. This restraint results in a complex interaction between the infill and the surrounding frame, which may lead to severe damage to the infill as well as the surrounding frame. The interaction is studied in different projects and effective approaches for the description of the behavior are still lacking. Experimental programs are usually quite expensive, while numerical models, once validated, do offer an efficient approach for the investigation of the interaction when horizontally loaded. In order to study the numerous parameters influencing the seismic load bearing behavior, numerical models may be used. Therefore, this contribution presents a numerical approach for the simulation of infill masonry in reinforced concrete frames. Both parts, the surrounding frame as well as the infill are represented by micro modelling approaches to correctly take into account the different types of failure. The adopted numerical model describes the inelastic behavior of the system, as indicated by the obtained results of the overall structural response as well as the formation of damage in the infilled wall. Comparison of the numerical and experimental results highlights the valuable contribution of numerical simulations in the study and design of infilled frames. As damage of the infill masonry may occur in-plane due to the interaction as well as out-of-plane due to the low vertical load, both directions of loading are investigated.}, language = {en} } @inproceedings{RosinMykoniouButenweg2017, author = {Rosin, J. and Mykoniou, K. and Butenweg, Christoph}, title = {Analysis Of Base Isolated Liquid Storage Tanks With 3D Fsi-Analysis As Well As Simplified Approaches}, series = {16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, booktitle = {16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, publisher = {Chilean Association on Seismology and Earthquake Engineering (ACHISINA)}, pages = {1 -- 14}, year = {2017}, abstract = {Tanks are preferably designed, for cost-saving reasons, as circular, cylindrical, thin-walled shells. In case of seismic excitation, these constructions are highly vulnerable to stability failures. An earthquake-resistant design of rigidly supported tanks for high seismic loading demands, however, uneconomic wall thicknesses. A cost-effective alternative can be provided by base isolation systems. In this paper, a simplified seismic design procedure for base isolated tanks is introduced, by appropriately modifying the standard mechanical model for flexible, rigidly supported tanks. The non-linear behavior of conventional base isolation systems becomes an integral part of a proposed simplified process, which enables the assessment of the reduced hydrodynamic forces acting on the tank walls and the corresponding stress distribution. The impulsive and convective actions of the liquid are taken into account. The validity of this approach is evaluated by employing a non-linear fluid-structure interaction algorithm of finite element method. Special focus is placed on the boundary conditions imposed from the base isolation and the resulting hydrodynamic pressures. Both horizontal and vertical component of ground motion are considered in order to study the principal effects of the base isolation on the pressure distribution of the tank walls. The induced rocking effects associated with elastomeric bearings are discussed. The results manifest that base isolated tanks can be designed for seismic loads by means of the proposed procedure with sufficient accuracy, allowing to dispense with numerically expensive techniques.}, language = {en} } @inproceedings{RajanButenwegDalgueretal.2017, author = {Rajan, S. and Butenweg, Christoph and Dalguer, L. A. and An, J. H. and Renault, P. and Klinkel, S.}, title = {Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013}, series = {16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, booktitle = {16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, publisher = {Chilean Association on Seismology and Earthquake Engineering (ACHISINA)}, year = {2017}, language = {en} } @article{ButenwegRosinHoller2017, author = {Butenweg, Christoph and Rosin, Julia and Holler, Stefan}, title = {Analysis of cylindrical granular material silos under seismic excitation}, series = {Buildings}, volume = {7}, journal = {Buildings}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings7030061}, pages = {1 -- 12}, year = {2017}, abstract = {Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil-structure interaction effects are taken into account.}, language = {en} } @article{KleinButenwegKlinkel2017, author = {Klein, Michel and Butenweg, Christoph and Klinkel, Sven}, title = {The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines}, series = {Procedia Engineering}, volume = {199}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2017.09.325}, pages = {3218 -- 3223}, year = {2017}, language = {en} } @article{MuellerJungAhammer2017, author = {M{\"u}ller, Wolfram and Jung, Alexander and Ahammer, Helmut}, title = {Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 2464}, publisher = {Springer Nature}, address = {Cham}, isbn = {2045-2322}, doi = {10.1038/s41598-017-02665-5}, pages = {1 -- 11}, year = {2017}, language = {en} } @article{MayerHentschkeHageretal.2017, author = {Mayer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varnaneh, Hossein Ali}, title = {A Nano-Mechanical Instability as Primary Contribution to Rolling Resistance}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 11275}, publisher = {Springer}, address = {Berlin}, issn = {2045-2322}, year = {2017}, language = {en} } @article{MeyerHentschkeHageretal.2017, author = {Meyer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica-Silica Contact in Filled Rubber}, series = {Macromolecules}, volume = {50}, journal = {Macromolecules}, number = {17}, issn = {1520-5835}, doi = {10.1021/acs.macromol.7b00947}, pages = {6679 -- 6689}, year = {2017}, language = {en} } @article{WeberArentSteffenetal.2017, author = {Weber, Tobias and Arent, Jan-Christoph and Steffen, Lucas and Balvers, Johannes M. and Duhovic, Miro}, title = {Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation}, series = {Journal of Composite Materials}, volume = {51}, journal = {Journal of Composite Materials}, number = {12}, publisher = {Sage}, address = {London}, issn = {1530-793X}, doi = {10.1177/0021998317699868}, pages = {1753 -- 1767}, year = {2017}, language = {en} } @article{WeberRuffStahl2017, author = {Weber, Tobias and Ruff-Stahl, Hans-Joachim K.}, title = {Advances in Composite Manufacturing of Helicopter Parts}, series = {International Journal of Aviation, Aeronautics, and Aerospace}, volume = {4}, journal = {International Journal of Aviation, Aeronautics, and Aerospace}, number = {1}, issn = {2374-6793}, doi = {10.15394/ijaaa.2017.1153}, year = {2017}, language = {en} } @inproceedings{FunkeBeckmannAbanteriba2017, author = {Funke, Harald and Beckmann, Nils and Abanteriba, Sylvester}, title = {A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1}, series = {Proceedings of the Eleventh Asia-Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017}, booktitle = {Proceedings of the Eleventh Asia-Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017}, isbn = {978-1-5108-5646-2}, pages = {262 -- 265}, year = {2017}, language = {en} } @article{ChenJostVolkeretal.2017, author = {Chen, Chao and Jost, Peter and Volker, Hanno and Kaminski, Marvin and Wirtssohn, Matti R. and Engelmann, Ulrich M. and Kr{\"u}ger, K. and Schlich, Franziska F. and Schlockermann, Carl and Lobo, Ricardo P.S.M. and Wuttig, Matthias}, title = {Dielectric properties of amorphous phase-change materials}, series = {Physical Review B}, volume = {95}, journal = {Physical Review B}, number = {9}, issn = {2469-9950}, doi = {10.1103/PhysRevB.95.094111}, pages = {Article number 094111}, year = {2017}, language = {en} } @article{EngelmannBuhlBaumannetal.2017, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Baumann, Martin and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia}, series = {Current Directions in Biomedical Engineering}, volume = {3}, journal = {Current Directions in Biomedical Engineering}, number = {2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2017-0096}, pages = {457 -- 460}, year = {2017}, language = {en} } @article{SavitskayaKistaubayevaDigeletal.2017, author = {Savitskaya, I. S. and Kistaubayeva, A. S. and Digel, Ilya and Shokatayeva, D. H.}, title = {Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials}, series = {Eurasian Chemico-Technological Journal}, volume = {19}, journal = {Eurasian Chemico-Technological Journal}, number = {3}, issn = {2522-4867}, doi = {10.18321/ectj670}, pages = {255 -- 264}, year = {2017}, language = {en} } @article{WoliszSchuetzBlankeetal.2017, author = {Wolisz, Henryk and Sch{\"u}tz, Thomas and Blanke, Tobias and Hagenkamp, Markus and Kohrn, Markus and Wesseling, Mark and M{\"u}ller, Dirk}, title = {Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets}, series = {Energy}, volume = {137}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.energy.2017.06.025}, pages = {715 -- 728}, year = {2017}, language = {en} } @misc{ArtmannLinderBayeretal.2017, author = {Artmann, Gerhard and Linder, Peter and Bayer, Robin and Gossmann, Matthias}, title = {Celldrum electrode arrangement for measuring mechanical stress [Patent of invention]}, publisher = {WIPO}, address = {Geneva}, pages = {18 Seiten}, year = {2017}, abstract = {The invention pertains to a CellDrum electrode arrangement for measuring mechanical stress, comprising a mechanical holder (1 ) and a non-conductive membrane (4), whereby the membrane (4) is at least partially fixed at its circumference to the mechanical holder (1), keeping it in place when the membrane (4) may bend due to forces acting on the membrane (4), the mechanical holder (1) and the membrane (4) forming a container, whereby the membrane (1) within the container comprises an cell- membrane compound layer or biological material (3) adhered to the deformable membrane 4 which in response to stimulation by an agent may exert mechanical stress to the membrane (4) such that the membrane bending stage changes whereby the container may be filled with an electrolyte, whereby an electric contact (2) is arranged allowing to contact said electrolyte when filled into to the container, whereby within a predefined geometry to the fixing of the membrane (4) an electrode (7) is arranged, whereby the electrode (7) is electrically insulated with respect to the electric contact (2) as well as said electrolyte, whereby mechanical stress due to an agent may be measured as a change in capacitance.}, language = {en} } @incollection{SamuelssonScheerWilsonetal.2017, author = {Samuelsson, K. and Scheer, Nico and Wilson, I. and Wolf, C.R. and Henderson, C.J.}, title = {Genetically Humanized Animal Models}, series = {Comprehensive Medicinal Chemistry III. 3rd Edition}, booktitle = {Comprehensive Medicinal Chemistry III. 3rd Edition}, editor = {Chackalamannil, Samuel}, publisher = {Elsevier}, address = {Saint Louis}, isbn = {978-0-12-803201-5}, doi = {10.1016/B978-0-12-409547-2.12376-5}, pages = {130 -- 149}, year = {2017}, abstract = {Genetically humanized mice for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging as promising in vivo models for improved prediction of the pharmacokinetic, drug-drug interaction, and safety characteristics of compounds in humans. This is an overview on the genetically humanized and chimeric liver-humanized mouse models, which are illustrated with examples of their utility in drug metabolism and toxicity studies. The models are compared to give guidance for selection of the most appropriate model by highlighting advantages and disadvantages to be carefully considered when used for studies in drug discovery and development.}, language = {en} } @article{WilsonWilsonScheeretal.2017, author = {Wilson, Ian D. and Wilson, Claire E. and Scheer, Nico and Dickie, A.P. and Schreiter, K. and Wilson, E. M. and Riley, R. J. and Wehr, R. and Bial, J.}, title = {The Pharmacokinetics and Metabolism of Lumiracoxib in Chimeric Humanized and Murinized FRG Mice}, series = {Biochemical pharmacology}, volume = {Volume 135}, journal = {Biochemical pharmacology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2968}, doi = {10.1016/j.bcp.2017.03.015}, pages = {139 -- 150}, year = {2017}, language = {en} }